首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Using in situ hybridization for the mouse brain, we analyzed developmental changes in gene expression for the ATP-binding cassette (ABC) transporter subfamilies ABCA1-4 and 7, and ABCG1, 2, 4, 5 and 8. In the embryonic brains, ABCA1 and A7 were highly expressed in the ventricular (or germinal) zone, whereas ABCA2, A3 and G4 were enriched in the mantle (or differentiating) zone. At the postnatal stages, ABCA1 was detected in both the gray and white matter and in the choroid plexus. On the other hand, ABCA2, A3 and A7 were distributed in the gray matter. In addition, marked up-regulation of ABCA2 occurred in the white matter at 14 days-of-age when various myelin protein genes are known to be up-regulated. In marked contrast, ABCA4 was selective to the choroid plexus throughout development. ABCG1 was expressed in both the gray and white matters, whereas ABCG4 was confined to the gray matter. ABCG2 was diffusely and weakly detected throughout the brain at all stages examined. Immunohistochemistry of ABCG2 showed its preferential expression on the luminal membrane of brain capillaries. Expression signals for ABCG5 and G8 were barely detected at any stages. The distinct spatio-temporal expressions of individual ABCA and G transporters may reflect their distinct cellular expressions in the developing and adult brains, presumably, to regulate and maintain lipid homeostasis in the brain.  相似文献   

3.
We investigated ATP-binding cassette transporters A1/G1 expression and function in mediating cholesterol efflux by examining the macrophages of cigarette-smoking patients with coronary artery disease (CAD) before and after smoking abstinence. Peripheral blood monocyte cells were collected from nonsmokers (n = 17), non-CAD (NCAD) smokers (n = 35), and CAD smokers (n = 32) before and after 3 months of smoking cessation. We found that the ABCA1 expression level was lower in macrophages from NCAD and CAD smokers than from nonsmokers at baseline. The ABCA1 function of mediating cholesterol efflux was reduced in NCAD and CAD smokers as compared with nonsmokers. After 3 months of smoking cessation, ABCA1 expression and function were improved in CAD smokers. However, ABCG1 expression and function did not change after smoking cessation. Furthermore, ABCA1 expression was inhibited by tar in human acute monocytic leukemia cell line THP-1-derived macrophages through the inhibition of liver X receptors. Nicotine and carbon monoxide did not inhibit ABCA1 expression. Our results indicate that chronic cigarette smoking impaired ABCA1-mediated cholesterol efflux in macrophages and that tobacco abstinence reversed the function and expression of ABCA1, especially in CAD patients. It was tobacco tar, rather than nicotine or carbon monoxide, that played a major role in the tobacco-induced disturbance of cellular cholesterol homeostasis.  相似文献   

4.
5.
6.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

7.
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 mediate the efflux of cholesterol and other sterols. Both transporters are expressed on the fetal capillaries of the placenta and are involved in maternal-to-fetal cholesterol delivery. In this study, we report that ABCA1 and ABCG1 are also present on the syncytiotrophoblast, the maternal facing placental membrane. Syncytial ABCA1 expression is apical, suggesting a role in cholesterol efflux to the mother, while ABCG1 is expressed basolaterally indicating transport to the fetus. Silencing of ABCA1 expression in primary trophoblasts in culture, or pharmacological antagonism by glyburide, decreased cholesterol efflux to apolipoprotein A-I (apoA-I) compared to controls, while ABCG1-silencing decreased cholesterol efflux to high density lipoproteins (HDL). In contrast, treatment with endogenous or synthetic LXR α/β ligands such as T0901317 increased ABCA1 and ABCG1 expression and enhanced cholesterol efflux to apoA-I and HDL, respectively, while treatment with pharmacological PPAR-α or -γ ligands was without effect. Trophoblasts transfected with ABCA1 or ABCG1 siRNA were more sensitive to toxic oxysterols substrates (25-hydroxycholesterol and 7-ketocholesterol) compared to mock-transfected cells, while prior treatment with T0901317 reduced oxysterol-mediated toxicity. These results identify syncytial ABCA1 and ABCG1 as important, inducible cholesterol transporters which also prevent placental accumulation of cytotoxic oxysterols.  相似文献   

8.
9.
Accumulated mast cells in atherosclerotic plaques secrete a high level of tryptase that may participate in the pathogenesis of atherosclerotic disease by diverse pathways. However, the role of tryptase in the lipid metabolism of macrophages remains to be defined. In the present study, we found that the addition of tryptase into THP-1-derived macrophages increased both intracellular lipid accumulation and total cholesterol level. Tryptase promoting foam cell formation was also observed by transmission electron microscope. These effects were resisted by APC366, a selective inhibitor of mast cell tryptase. Tryptase dramatically resisted 22RHC induced activation of LXRα protein expression, which can be reversed by SAM-11 (a PAR-2-specific neutralizing antibody) and reduced LXRα, ABCG1, ABCA1 and SREBP-1c mRNA levels and ABCG1 protein level, which were all blocked by APC366. PAR-2 agonist also redeemed 22RHC stimulation to activate LXRα, ABCG1 protein expression, and mRNA levels of LXRα and its target genes in both THP-1-derived macrophages and primary human monocyte-derived macrophages. In primary macrophages that were first transfected with PAR-2 siRNA and then treated with tryptase, both the ABCG1 protein level and mRNA levels of LXRα and ABCG1 were higher than those in the control siRNA-treated cells. Taken together, our data clarified the PAR-2 expression of human macrophages and suggested that tryptase might promote lipid accumulation in macrophages and foam cell formation by suppressing LXRα activation via PAR-2/LXRα/LXRα target genes signaling pathway. This investigation sheds a new light on the role of tryptase in foam cell formation and pathogenesis of atherosclerosis.  相似文献   

10.
11.
Two ATP-binding cassette transporter proteins, ABCA1 and ABCG1, may mediate an active efflux of cellular cholesterol and phospholipids. They are ubiquitously expressed and are subject to regulation by cholesterol loading or by treatment with agents that activate the nuclear hormone receptor LXR. Earlier studies in both primates and non-primates reported that treatment with endotoxin (bacterial lipopolysaccharide, LPS) reduces plasma levels of HDL cholesterol. To determine if such HDL reduction correlates with a change in ABCA1 or ABCG1 expression, their expressions were measured in THP-1 monocytes and mice treated with LPS. LPS treatment leads to a rapid, dose-dependent increase of ABCA1 but not ABCG1 mRNA expression. Analysis of mouse livers showed that LPS treatment decreases expression of CYP7A, another target gene of LXR. When THP-1 cells were transfected with the ABCA1 promoter construct (-928 to +101 bp), promoter activity was significantly increased by treatment of 22(R)-hydroxycholesterol but not by LPS. Together, these studies show that LPS regulates ABCA1 expression through an LXR-independent mechanism. Further studies showed that treatment with Rhodobacter sphaeroiders LPS, an LPS antagonist, or PD169316, a specific p38 MAP kinase inhibitor, prevented the induction of ABCA1 by LPS. Therefore, this suggests that both transport of LPS from the plasma membrane to an intracellular site and activation of p38 MAP kinase are involved in the LPS-mediated induction of ABCA1.  相似文献   

12.
13.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

14.
15.
BackgroundCOPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown.ObjectiveIdentify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD.MethodsWhole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS) was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma) package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser.Results25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington’s disease, Parkinson’s disease and acute myeloid leukemia gene signatures.ConclusionThe blood gene signature of statins’ use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.  相似文献   

16.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

17.
18.
Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe−/−) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe−/− mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe−/− mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe−/− retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.  相似文献   

19.
20.
The release of cholesterol from choroid plexus epithelial cells (CPE) plays an important role in cholesterol homeostasis in the CSF. The purpose of this study was to clarify the molecules involved in cholesterol release in CPE and the regulation mechanisms of the cholesterol release by the liver X receptor (LXR) using a conditionally immortalized CPE line (TR-CSFB3). The mRNA expression of LXRalpha, LXRbeta and their target genes, ATP-binding cassette transporter (ABC)A1, ABCG1, ABCG4 and ABCG5, were detected in rat choroid plexus. ABCA1 and ABCG1 protein were detected in the plasma membrane of TR-CSFB3 cells. Following treatment with 24S-hydroxycholesterol, an endogenous LXR ligand, the expression of ABCA1 and ABCG1 were induced in TR-CSFB3 cells. Moreover, apolipoprotein (apo)AI- and high-density lipoprotein (HDL)-mediated cholesterol release to the apical side of TR-CSFB3 cells was facilitated by this treatment, whereas that to the basal side was not affected. Following 24S-hydroxycholesterol treatment, apoE3-dependent cholesterol release from TR-CSFB3 cells was enhanced more than the apoE4-dependent release. These results suggest that LXR activation facilitates cholesterol release into the CSF from CPE through the functional induction of ABCA1 and ABCG1. The difference between apoE3 and apoE4 suggests that the cholesterol release from CPE is related to the development of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号