首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model.  相似文献   

2.
Kahweol, the coffee-specific diterpene, has been reported for its tumor cell growth inhibitory activity and anti-carcinogenic activity. The mechanism by which kahweol initiates apoptosis remains poorly understood. In the present study, we investigated the effect of kahweol on the apoptotic pathway in U937 human promonocytic cells. We show that kahweol induces apoptosis in association with the activation of caspase 3 and cytochrome c release from the mitochondria to the cytosol, as well as down-regulation of anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1 and XIAP). Kahweol altered the phosphorylation state of members of the MAPKs and Akt. Ectopic expression of Bcl-2 or constitutive active Akt (myr-Akt) in U937 cells attenuates kahweol-induced apoptosis. In addition, we have also shown that JNK and Akt signal pathway plays a crucial role in kahweol-induced apoptosis in U937 cells. Taken together, our results show the activity of kahweol to modulate multiple components in apoptotic response of human leukemia cells and raise the possibility a novel therapeutic strategy in hematological malignancies.  相似文献   

3.
Artemisinin, the active principle of the Chinese medicinal herb Artemisia annua, and its derivatives (i.e. dihydroartemisinin, DHA) were reported to exhibit anti-tumor activity both in vitro and in vivo. The purpose of the present study was to investigate the functional role of Mitogen-Activated Protein Kinase (MEK)/Extracellular signal-regulated protein Kinase (ERK) signaling cascade in dihydroartemisinin (DHA)-induced apoptosis in human leukemia cells in vitro and anti-leukemic activity in vivo. Human leukemia cells were treated with DHA in dose- and time-dependent manners, after which apoptosis, caspase activation, Mcl-1 expression, and cell signaling pathways were evaluated. Parallel studies were performed in AML and ALL primary human leukemia cells. In vivo anti-leukemic activity mediated by DHA was also investigated using U937 xenograft mouse model. Exposure of DHA resulted in a pronounced increase in apoptosis in both transformed and primary human leukemia cells but not in normal peripheral blood mononuclear cells. DHA-induced apoptosis was accompanied by caspase activation, cytochrome c release, Mcl-1 down-regulation, as well as MEK/ERK inactivation. Pretreatment with MEK inhibitor PD98059, which potentiated DHA-mediated MEK and ERK inactivation, intensified DHA-mediated apoptosis. Conversely, enforced expression of a constitutively active MEK1 attenuated DHA-induced apoptosis. Furthermore, DHA-mediated inhibition of tumor growth of mouse U937 xenograft was associated with induction of apoptosis and inactivation of ERK. The findings in the present study showed that DHA-induced apoptosis in human leukemia cells in vitro and exhibited an anti-leukemic activity in vivo through a process that involves MEK/ERK inactivation, Mcl-1 down-regulation, culminating in cytochrome c release and caspase activation.  相似文献   

4.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

5.
R-(−)-gossypol acetic acid (AT-101) is a natural cottonseed product that exhibits anticancer activity. However, the molecular mechanism behind the antileukemic activity of AT-101 has not been well characterized. In this study, we investigated how AT-101 induces apoptosis in human leukemia cells. Exposure to AT-101 significantly increased apoptosis in both human leukemia cell lines and primary human leukemia cells. This increase was accompanied by the activation of caspases, cytochrome c release, Bcl2-associated X protein (Bax) translocation, myeloid cell leukemia-1 (Mcl-1) downregulation, Bcl-2-associated death promoter (Bad) dephosphorylation, Akt inactivation, and RhoA/Rho-associated coiled-coil containing protein kinase 1/phosphatase and tensin homolog (RhoA/ROCK1/PTEN) activation. RhoA, rather than caspase-3 cleavage, mediated the cleavage/activation of ROCK1 that AT-101 induced. Inhibiting RhoA and ROCK1 activation by C3 exoenzyme (C3) and Y27632, respectively, attenuated the ROCK1 cleavage/activation, PTEN activity, Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and apoptosis mediated by AT-101. Knocking down ROCK1 expression using a ROCK1-specific siRNA also significantly abrogated AT-101-mediated apoptosis. Constitutively active Akt prevented the AT-101-induced Mcl-1 downregulation, Bad dephosphorylation, and apoptosis. Conversely, AT-101 lethality was potentiated by the phosphatidylinositol 3-kinase inhibitor LY294002. In vivo, the tumor growth inhibition caused by AT-101 was also associated with RhoA/ROCK1/PTEN activation and Akt inactivation in a mouse leukemia xenograft model. Collectively, these findings suggest that AT-101 may preferentially induce apoptosis in leukemia cells by interrupting the RhoA/ROCK1/PTEN pathway, leading to Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and Bax translocation, which culminate in mitochondrial injury and apoptosis.  相似文献   

6.
BAY 43-9006 is a kinase inhibitor that induces apoptosis in a variety of tumor cells. Here we report that treatment with BAY 43-9006 results in marked cytochrome c and AIF release into the cytosol, caspase-9, -8, -7, and -3 activation, and apoptosis in human leukemia cells (U937, Jurkat, and K562). Pronounced apoptosis was also observed in blasts from patients with acute myeloid leukemia. These events were accompanied by ERK1/2 inactivation and caspase-independent down-regulation of Mcl-1. Inducible expression of a constitutively active MEK1 construct did not prevent Mcl-1 down-regulation, suggesting that this event is not related to MEK/ERK pathway inactivation. Furthermore, BAY 43-9006 did not induce major changes in Mcl-1 mRNA levels monitored by real-time PCR or Mcl-1 promoter activity demonstrated by luciferase reporter assays, but it did enhance Mcl-1 down-regulation in actinomycin D-treated cells. Inhibition of protein synthesis by cycloheximide or proteasome function with MG132 and pulse-chase studies with [35S]methionine demonstrated that BAY 43-9006 did not diminish Mcl-1 protein stability, nor did it enhance Mcl-1 ubiquitination, but instead markedly attenuated Mcl-1 translation in association with the rapid and potent dephosphorylation of the eIF4E translation initiation factor. Finally, ectopic expression of Mcl-1 in leukemic cells markedly inhibited BAY 43-9006-mediated cytochrome c cytosolic release, caspase-9, -7, and -3 activation, as well as cell death, indicating that Mcl-1 operates upstream of cytochrome c release and caspase activation. Together, these findings demonstrate that BAY 43-9006 mediates cell death in human leukemia cells, at least in part, through down-regulation of Mcl-1 via inhibition of translation.  相似文献   

7.
Cell surface proteases have been demonstrated to play an important role in facilitating cell invasion into the extracellular matrix and may contribute significantly to extracellular matrix degradation by metastatic cancer cells. Abundant expression of these enzymes is associated with poor prognosis. Thus, protease inhibitors that repress cell surface proteases may be applicable to cancer therapy. Because soybean Kunitz-type trypsin inhibitor has been found to induce apoptotic death of human leukemia Jurkat cells, anti-leukemia activity of Bungarus multicinctus protease inhibitor-like protein-1 (PILP-1) is thus examined. PILP-1 induced apoptosis of human leukemia U937 cells, characteristic of loss of mitochondrial membrane potential, degradation of procaspase-8, and production of t-Bid. FADD down-regulation neither restored viability of PILP-1-treated cells nor attenuated production of active caspase-8 and t-Bid in PILP-1-treated cells, suggesting that the death receptor-mediated pathway was not involved in the cytotoxicity of PILP-1. It was found that PILP-1-evoked p38 MAPK activation and ERK inactivation led to PILP-1-induced cell death and down-regulation of ADAM17. Knockdown of ADAM17 by siRNA induced death of U937 cells and inactivation of Lyn and Akt. Immunoprecipitation suggested that ADAM17 and Lyn form complexes. Overexpression of ADAM17, LynY507F (gain of function), and constitutively active Akt suppressed the cytotoxic effects of PILP-1. PILP-1-elicited inactivation of Lyn and Akt was abrogated in cells with overexpressed ADAM17 or LynY507F. Taken together, our data indicate that ADAM17-mediated activation of Lyn/Akt maintains the viability of U937 cells and that suppression of the pathway is responsible for PILP-1-induced apoptosis.  相似文献   

8.
Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-γ1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-κB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.  相似文献   

9.
Exposure of acute promyelocytic leukemia (APL) cells to all-trans retinoic acid (ATRA) increases levels of Mcl-1, however, the implication of ATRA-mediated expressions of Mcl-1 in these cells remains to be fully elucidated. This study found that exposure of NB4 and PL-21 cells to ATRA increased levels of Mcl-1 in association with phosphorylation of c-jun N-terminus kinases. Down-regulation of Mcl-1 by a small interfering (siRNA) or an inhibitor of JNK significantly potentiated the ability of ATRA to induce differentiation and apoptosis in these cells. On the other hand, the anti-leukemia effects of ATRA were blunted when Mcl-1 was forced expressed in NB4 and PL-21 cells as well as leukemia cells isolated from individuals with APL. Furthermore, down-regulation of Mcl-1 by an siRNA sensitized non-APL U937 and KG-1 leukemia cells to ATRA-mediated differentiation and apoptosis. Taken together, inhibition of Mcl-1 might be useful to potentiate the action of ATRA in APL as well as non-APL AML cells.  相似文献   

10.
The functional significance of the cyclin-dependent kinase inhibitor (CDKI) p21Cip1/WAF1 in paclitaxel-mediated lethality was examined in p53-null human leukemia cells (U937 and Jurkat). In these cells, paclitaxel exposure failed to induce p21Cip1/Waf1 expression. Nevertheless, stable expression of U937 cells with a p21Cip1/WAF1 antisense construct blocked paclitaxel-induced G2M arrest and significantly, albeit modestly, increased mitochondrial injury, caspase activation, apoptosis, and loss of clonogenic potential. These protective effects were less than those observed in cells exposed to the antimetabolite ara-C. Consistent with these results, enforced expression of p21Cip1/WAF1 in Jurkat cells transfected with a construct driven by a doxycycline-responsive promoter increased the percentage of cells arrested in G2M, but attenuated paclitaxel-mediated mitochondrial injury and apoptosis. Unexpectedly, enforced expression of p21Cip1/WAF1 diminished paclitaxel-mediated inactivation of ERK, and reduced paclitaxel-induced activation of JNK as well as Bcl-2 phosphorylation. Together, these findings suggest that the CDKI p21Cip1/WAF1 modestly but significantly protects p53-null human leukemia cells from paclitaxel-mediated lethality, and raise the possibility that p21Cip1/WAF1-associated perturbations in signal transduction pathways as well as Bcl-2 phosphorylation status may play a role in this phenomenon.  相似文献   

11.
Chrysin is a natural, biologically active compound extracted from many plants, honey, and propolis. It possesses potent anti-inflammation, anti-cancer, and anti-oxidation properties. The mechanism by which chrysin initiates apoptosis remains poorly understood. In the present report, we investigated the effect of chrysin on the apoptotic pathway in U937 human promonocytic cells. We show that chrysin induces apoptosis in association with the activation of caspase 3 and that Akt signal pathway plays a crucial role in chrysin-induced apoptosis in U937 cells. Furthermore, we have shown that inhibition of Akt phosphorylation in U937 cells by the specific PI3K inhibitor, LY294002 significantly, enhanced apoptosis. Overexpression of a constitutively active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase 3, and PLC-gamma1 cleavage by chrysin. Together, these findings suggest that the Akt pathway plays a major role in regulating the apoptotic response of human leukemia cells to chrysin and raise the possibility that combined interruption of chrysin and PI3K/Akt-related pathways may represent a novel therapeutic strategy in hematological malignancies.  相似文献   

12.
Aberrant overexpression of antiapoptotic members of the Bcl-2 protein family contributes to resistance to anticancer therapeutic drugs. Thus, this protein represent attractive target for novel anticancer agents. In the present study, we determined the effect of the anti-apoptosis protein Bcl-2 on caspase-3 activation, PLC-γ1 degradation and Akt activation during the various anticancer agents-induced apoptosis. Treatment with chrysin for 12 h produced morphological features of apoptosis in U937 cells, which was associated with caspase-3 activation and PLC-γ1 degradation. Induction of apoptosis was also accompanied by down-regulation of XIAP and inactivation of Akt. Chrysin-induced caspase-3 activation, PLC-γ1 degradation and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells. Ectopic expression of Bcl-2 appeared to inhibit ceramide-, and Akt specific inhibitor (SH-6)-induced apoptosis by sustained Akt activation. Thus, our findings imply that some of the biological functions of Bcl-2 may be attributed to their ability to inhibit anticancer agents-induced apoptosis through the sustained Akt activation.  相似文献   

13.
The effect of 1,4-bis-(4-(1H-benzo[d]imidazol-2-yl-phenyl)) piperazine (BIPP), a newly synthesized piperazine derivative, on U937 leukemia cell viability was investigated. We show that BIPP induces dose-responsive apoptotic cell death in U937 cells by intrinsic mechanisms of apoptosis. Maximum apoptotic effect of BIPP on U937 cells was observed at 12.8μM. BIPP-induced apoptosis was evident by characteristics such as altered annexin-V binding, caspase activation, loss of mitochondrial membrane potential (MMP) and cytochrome c release. BIPP also differentially activates initiator and effector caspases combined with the loss of MMP strongly suggesting that BIPP causes an intrinsic apoptosis in U937 leukemia cells. Due to our observations that BIPP induces leukemia cell death without significantly affecting normal cells, our data suggests that it may be a potential therapeutic agent for human myeloid leukemia.  相似文献   

14.
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib.  相似文献   

15.

Background

Diallyl trisulfide (DATS) is one of the major constituents in garlic oil and has demonstrated various pharmacological activities, including antimicrobial, antihyperlipidemic, antithrombotic, and anticancer effects. However, the mechanisms of antiproliferative activity in leukemia cells are not fully understood. In this study, the apoptotic effects of DATS were investigated in human leukemia cells.

Results

Results of this study indicated that treatment with DATS resulted in significantly inhibited leukemia cell growth in a concentration- and time-dependent manner by induction of apoptosis. In U937 cells, DATS-induced apoptosis was correlated with down-regulation of Bcl-2, XIAP, and cIAP-1 protein levels, cleavage of Bid proteins, activation of caspases, and collapse of mitochondrial membrane potential. The data further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, which was attenuated by pretreatment with antioxidant N-acetyl-l-cysteine (NAC), a scavenger of ROS. In addition, administration of NAC resulted in significant inhibition of DATS-induced apoptosis by inhibiting activation of caspases.

Conclusions

The present study reveals that the cytotoxicity caused by DATS is mediated by generation of ROS and subsequent activation of the ROS-dependent caspase pathway in U937 leukemia cells.  相似文献   

16.
Oxidative stress induces JNK activation, which leads to apoptosis through mitochondria-dependent caspase activation. However, little is known about the mechanism by which JNK alters mitochondrial function. In this study, we investigated the role of phosphorylation of myeloid cell leukemia 1 (Mcl-1), an anti-apoptotic member of the Bcl-2 family, in oxidative stress-induced apoptosis. We found that JNK phosphorylated Ser-121 and Thr-163 of Mcl-1 in response to stimulation with H(2)O(2) and that transfection of unphosphorylatable Mcl-1 resulted in an enhanced anti-apoptotic activity in response to stimulation with H(2)O(2). JNK-dependent phosphorylation and thus inactivation of Mcl-1 may be one of the mechanisms through which oxidative stress induces cellular damage.  相似文献   

17.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-beta-d-arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1 of the cell cycle and an accumulation of a population in the sub-G1 phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measured in vitro by enhanced metabolization of a fluorescence substrate and in vivo by cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cdelta. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

18.
19.
This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.  相似文献   

20.
Treatment with the anti-leukemic drug arsenic trioxide (As(2)O(3), 1-4 microM) sensitizes U937 promonocytes and other human myeloid leukemia cell lines (HL60, NB4) to apoptosis induction by TNFalpha. As(2)O(3) plus TNFalpha increases TNF receptor type 1 (TNF-R1) expression, decreases c-FLIP(L) expression, and causes caspase-8 and Bid activation, and apoptosis is reduced by anti-TNF-R1 neutralizing antibody and caspase-8 inhibitor. The treatment also causes Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP down-regulation, and caspase-9 and caspase-3 activation. Bcl-2 over-expression inhibits cytochrome c release and apoptosis, and also prevents c-FLIP(L) down-regulation and caspase-8 activation, but not TNF-R1 over-expression. As(2)O(3) does not affect Akt phosphorylation/activation or intracellular GSH content, nor prevents the TNFalpha-provoked stimulation of p65-NF-kappaB translocation to the nucleus and the increase in NF-kappaB binding activity. Treatments with TNFalpha alone or with As(2)O(3) plus TNFalpha cause TNF-R1-mediated p38-MAPK phosphorylation/activation. P38-MAPK-specific inhibitors attenuate the As(2)O(3) plus TNFalpha-provoked activation of caspase-8/Bid, Bax translocation, cytochrome c release, and apoptosis induction. In conclusion, the sensitization by As(2)O(3) to TNFalpha-induced apoptosis in promonocytic leukemia cells is an Akt/NF-kappaB-independent, p38-MAPK-regulated process, which involves the interplay of both the receptor-mediated and mitochondrial executioner pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号