首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chronic kidney disease pathogenesis involves both tubular and vascular injuries. Despite abundant investigations to identify the risk factors, the involvement of chronic endothelial dysfunction in developing nephropathies is insufficiently explored. Previously, soluble thrombomodulin (sTM), a cofactor in the activation of protein C, has been shown to protect endothelial function in models of acute kidney injury. In this study, the role for sTM in treating chronic kidney disease was explored by employing a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice. Analysis of kidneys from these mice after 3 mo showed no apparent phenotype, whereas 6-mo-old mice demonstrated infiltration of CD45-positive leukocytes accompanied by upregulated gene expression of inflammatory chemokines, markers of kidney injury, and albuminuria. Intervention with murine sTM with biweekly subcutaneous injections during this window of disease development between months 3 and 6 prevented the development of kidney pathology. To better understand the mechanisms of these findings, we determined whether sTM could also prevent chronic endothelial cell activation in vitro. Indeed, treatment with sTM normalized increased chemokines, adhesion molecule expression, and reduced transmigration of monocytes in continuously activated TNF-expressing endothelial cells. Our results suggest that vascular inflammation associated with vulnerable endothelium can contribute to loss in renal function as suggested by the tie2-TNF mice, a unique model for studying the role of vascular activation and inflammation in chronic kidney disease. Furthermore, the ability to restore the endothelial balance by exogenous administration of sTM via downregulation of specific adhesion molecules and chemokines suggests a potential for therapeutic intervention in kidney disease associated with chronic inflammation.  相似文献   

2.
3.
Despite a positive correlation between chronic kidney disease and atherosclerosis, the causative role of uremic toxins in leukocyte-endothelial interactions has not been reported. We thus examined the effects of indoxyl sulfate, a uremic toxin, on leukocyte adhesion to activated endothelial cells and the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with indoxyl sulfate significantly enhanced the adhesion of human monocytic cells (THP-1 cell line) to TNF-α-activated HUVEC under physiological flow conditions. Treatment with indoxyl sulfate enhanced the expression level of E-selectin, but not that of ICAM-1 or VCAM-1, in HUVEC. Indoxyl sulfate treatment enhanced the activation of JNK, p38 MAPK, and NF-κB in TNF-α-activated HUVEC. Inhibitors of JNK and NF-κB attenuated indoxyl sulfate-induced E-selectin expression in HUVEC and subsequent THP-1 adhesion. Furthermore, treatment with the NAD(P)H oxidase inhibitor apocynin and the glutathione donor N-acetylcysteine inhibited indoxyl sulfate-induced enhancement of THP-1 adhesion to HUVEC. Next, we examined the in vivo effect of indoxyl sulfate in nephrectomized chronic kidney disease model mice. Indoxyl sulfate-induced leukocyte adhesion to the femoral artery was significantly reduced by anti-E-selectin antibody treatment. These findings suggest that indoxyl sulfate enhances leukocyte-endothelial interactions through up-regulation of E-selectin, presumably via the JNK- and NF-κB-dependent pathway.  相似文献   

4.
Inflammation and oxidative stress are common features of patients with chronic kidney disease (CKD) and many uremic solutes retained in these patients could be involved in these processes, among which protein-bound solutes such as indoxyl sulfate (IS). White adipose tissue recently gained attention as an important source of inflammation and oxidative stress. To examine the effect of IS on adipocytes, 3T3-L1 adipose cells were incubated with IS to mimic the conditions encountered in uremic patients. Incubation of adipose cells with IS increased reactive oxygen species production generated mainly through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase since it was prevented by the NADPH oxidase inhibitor apocynin. Exposure to IS furthermore exacerbated the secretion of tumor necrosis factor-α and interleukin-6 by adipose cells. This inflammatory response was prevented by NADPH oxidase inhibition pinpointing the pivotal role of intracellular oxidative stress. IS induces adipocyte perturbation and promotes inflammatory state mainly through induction of oxidative stress. IS, a uremic toxin, accumulates in CKD patients could, therefore, be an important mediator of adipocyte dysfunction in these patients.  相似文献   

5.
End stage renal disease (ESRD) patients accumulate blood hallmarks of protein glycation and oxidation. It is now well established that these protein damage products may represent a heterogeneous class of uremic toxins with pro-inflammatory and pro-oxidant properties. These toxins could be directly involved in the pathogenesis of the inflammatory syndrome and vascular complications, which are mainly sustained by the uremic state and bioincompatibility of dialysis therapy. A key underlying event in the toxicity of these proteinaceous solutes has been identified in scavenger receptor-dependent recognition and elimination by inflammatory and endothelial cells, which once activated generate further and even more pronounced protein injuries by a self-feeding mechanism based on inflammation and oxidative stress-derived events. This review examines the literature and provides original information on the techniques for investigating proteinaceous pro-inflammatory toxins. We have also evaluated therapeutic - either pharmacological or dialytic - strategies proposed to alleviate the accumulation of these toxins and to constrain the inflammatory and oxidative burden of ESRD.  相似文献   

6.
Cardiovascular complications caused by an accelerated atherosclerotic disease consist the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). These patients present multiple atherosclerotic risk factors, considered traditional, as well as nontraditional risk factors such as inflammation and oxidative stress. These complications are also seen in obesity, in which endothelial dysfunction is one of the early stages of atherosclerosis. The impact of trace metal deficiencies on this process is not well studied in patients with CKD and in obese people, although the influence of trace elements depletion, particularly zinc (Zn), may have significant clinical implications. This brief review describes the functions of Zn as well as the respective role of this trace element in atherosclerosis processes, with a particular emphasis on obese patients with chronic kidney disease.  相似文献   

7.
Organ–organ crosstalk is involved in homeostasis. Gastrointestinal symptoms are common in patients with renal failure. The aim of this study was to elucidate the relationship between gastrointestinal motility and gastrointestinal symptoms in chronic kidney disease. We performed studies in C57BL/6 mice with chronic kidney disease after 5/6 nephrectomy. Gastrointestinal motility was evaluated by assessing the ex vivo responses of ileum and distal colon strips to electrical field stimulation. Feces were collected from mice, and the composition of the gut microbiota was analyzed using 16S ribosomal RNA sequencing. Mice with chronic kidney disease after 5/6 nephrectomy showed a decreased amount of stool, and this constipation was correlated with a suppressed contraction response in ileum motility and decreased relaxation response in distal colon motility. Spermine, one of the uremic toxins, inhibited the contraction response in ileum motility, but four types of uremic toxins showed no effect on the relaxation response in distal colon motility. The 5/6 nephrectomy procedure disturbed the balance of the gut microbiota in the mice. The motility dysregulation and constipation were resolved by antibiotic treatments. The expression levels of interleukin 6, tumor necrosis factor-α, and iNOS in 5/6 nephrectomy mice were increased in the distal colon but not in the ileum. In addition, macrophage infiltration in 5/6 nephrectomy mice was increased in the distal colon but not in the ileum. We found that 5/6 nephrectomy altered gastrointestinal motility and caused constipation by changing the gut microbiota and causing colonic inflammation. These findings indicate that renal failure was remarkably associated with gastrointestinal dysregulation.  相似文献   

8.
Costimulatory blockade with CTLA4Ig and anti-CD40L along with a single dose of cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F(1) mice. To understand the mechanisms for remission and for impending relapse, we examined the expression profiles of 61 inflammatory molecules in the perfused kidneys of treated mice and untreated mice at different stages of disease. Further studies using flow cytometry and immunohistochemistry allowed us to determine the cellular origins of several key markers. We show that only a limited set of inflammatory mediators is expressed in the kidney following glomerular immune complex deposition but before the onset of proteinuria. Formation of a lymphoid aggregate in the renal pelvis precedes the invasion of the kidney by inflammatory cells. Regulatory molecules are expressed early in the disease process and during remission but do not prevent the inevitable progression of active inflammation. Onset of proliferative glomerulonephritis and proteinuria is associated with activation of the renal endothelium, expression of chemokines that mediate glomerular cell infiltration, and infiltration by activated dendritic cells and macrophages that migrate to different topographical areas of the kidney but express a similar profile of inflammatory cytokines. Increasing interstitial infiltration by macrophages and progressive tubular damage, manifested by production of lipocalin-2, occur later in the disease process. Studies of treated mice identify a type II (M2b)-activated macrophage as a marker of remission induction and impending relapse and suggest that therapy for systemic lupus erythematosus nephritis should include strategies that prevent both activation of monocytes and their migration to the kidney.  相似文献   

9.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis, including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases. Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in the treatment response.  相似文献   

10.
Abstract

The acute-phase protein serum amyloid A (SAA) is a clinically useful marker of inflammation and associates strongly with increased risk of cardiovascular events. Chronically elevated SAA concentrations may contribute to physiological processes that lead to atherosclerosis, including endothelial dysfunction, an early and predictive event in the development of cardiovascular disease. Accumulating data suggest that SAA can be a direct mediator in the development and progression of atherogenesis and atherothrombosis. SAA may affect key events underlying acute coronary syndromes, including cholesterol transport, contribute to endothelial dysfunction, promote thrombosis, and enhance leukocyte trafficking and activation. This review summarizes the evidence supporting a role for SAA as a potential regulator of inflammation and endothelial dysfunction, which underlie the adverse outcomes that complicate coronary artery disease. The findings suggest that novel therapeutic strategies to reduce SAA levels and/or oppose the actions of SAA may have beneficial effects in patients with coronary artery disease.  相似文献   

11.
Uremic toxins such as indoxyl sulfate (IS) accumulate at a high level in end stage renal disease (ESRD) and can exhibit significant systemic endothelial toxicity leading to accelerated cardiovascular events. The precise molecular mechanisms by which IS causes endothelial dysfunction are unknown. We tested the hypothesis that IS negatively influences properties of endothelial cells, such as migration and tube formation, by depleting nitric oxide (NO) bioavailability, and that an NO donor can reverse these inhibitory effects. IS inhibited human umbilical vein endothelial cell (HUVEC) migration and formation of tubes on matrigel. Mechanistically, IS inhibited VEGF-induced NO release from HUVECs. An NO donor, SNAP, reversed IS-mediated inhibition of HUVEC migration as well as tube-formation. IS inhibited ERK 1/2 MAP kinase activity in a dose-dependent manner, but this was preserved by SNAP. Inhibition of ERK 1/2 with a pharmacological inhibitor (U0126) decreased HUVEC migration and tube formation; these effects too were prevented by SNAP. Further, IS stimulated activation of myosin light chain (MLC), potentially stimulating endothelial contractility, while SNAP decreased MLC activation. Thus, we conclude that the negative effects of IS on endothelial cells are prevented, to a major extent, by NO, via its divergent actions on ERK MAP kinase and MLC.  相似文献   

12.
Here we report a metabolomics discovery study conducted on blood serum samples of patients in different stages of chronic kidney disease (CKD). Metabolites were monitored on a quality controlled holistic platform combining reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry in both negative and positive ionization mode and gas chromatography coupled to quadrupole mass spectrometry. A substantial portion of the serum metabolome was thereby covered. Eighty-five metabolites were shown to evolve with CKD progression of which 43 metabolites were a confirmation of earlier reported uremic retention solutes and/or uremic toxins. Thirty-one unique metabolites were revealed which were increasing significantly throughout CKD progression, by a factor surpassing the level observed for creatinine, the currently used biomarker for kidney function. Additionally, 11 unique metabolites showed a decreasing trend.  相似文献   

13.
The role of podocytes in the development and progression of glomerular disease has been extensively investigated in the past decade. However, the importance of glomerular endothelial cells in the pathogenesis of proteinuria and glomerulosclerosis has been largely ignored. Recent studies have demonstrated that endothelial nitric oxide synthatase (eNOS) deficiency exacerbates renal injury in anti-GBM and remnant kidney models and accelerates diabetic kidney damage. Increasing evidence also demonstrates the importance of the glomerular endothelium in preventing proteinuria. We hypothesize that endothelial dysfunction can initiate and promote the development and progression of glomerulopathy. Administration of adriamycin (ADR) to C57BL/6 mice, normally an ADR resistant strain, with an eNOS deficiency induced overt proteinuria, severe glomerulosclerosis, interstitial fibrosis and inflammation. We also examined glomerular endothelial cell and podocyte injury in ADR-induced nephropathy in Balb/c mice, an ADR susceptible strain, by immunostaining, TUNEL and Western blotting. Interestingly, down-regulation of eNOS and the appearance of apoptotic glomerular endothelial cells occurred as early as 24 hours after ADR injection, whilst synaptopodin, a functional podocyte marker, was reduced 7 days after ADR injection and coincided with a significant increase in the number of apoptotic podocytes. Furthermore, conditioned media from mouse microvascular endothelial cells over-expressing GFP-eNOS protected podocytes from TNF-α-induced loss of synaptopodin. In conclusion, our study demonstrated that endothelial dysfunction and damage precedes podocyte injury in ADR-induced nephropathy. Glomerular endothelial cells may protect podocytes from inflammatory insult. Understanding the role of glomerular endothelial dysfunction in the development of kidney disease will facilitate in the design of novel strategies to treat kidney disease.  相似文献   

14.

Introduction

Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF), an active component with known antioxidant activities.

Aim of the study

The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury.

Results

CAF increased basal as well as acetylcholine—induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM) increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration.

Conclusion

The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.  相似文献   

15.
Lee CT  Lee YT  Ng HY  Chiou TT  Cheng CI  Kuo CC  Wu CH  Chi PJ  Lee WC 《Life sciences》2012,90(1-2):47-53
AimsEndothelial dysfunction is a common manifestation of chronic kidney disease (CKD). The protein-bound uremic toxins have emerged as important factors associated with cardiovascular disease and the outcome of CKD. The effect of indoxyl sulfate (IS) on endothelial cells remains unclear.Main methodsHuman umbilical endothelial cells (HUVEC) were incubated using IS at two concentrations: 100 μM and 1000 μM over two periods of time: 16 and 48 h. HUVEC were also pre-treated with simvastatin to examine its effect. RT-PCR was used to assess changes in the gene expression of intracellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), Monocyte chemotactic protein-1 (MCP-1), E-selectin, and angiotensin receptor type 1 (AT1R). Protein abundance of the investigated molecules was assessed by immunoblotting.Key findingsTreatment with 100 μM IS for 16 h induced a 2-fold increase in the expression of ICAM-1, VCAM-1, and MCP-1. At a concentration of 1000 μM, there was a 2–3-fold increase. An extended treatment period at low concentrations was associated with a 2–3 fold increase and the increase of ICAM-1 and VCAM-1 was more prominent under high concentration. Results of immunoblotting confirmed an increase in the abundance of ICAM-1, VCAM-1 and MCP-1. No significant change was noted in E-selectin and AT1R according to concentration or treatment duration. Pre-treatment with simvastatin did not alter IS-induced changes.SignificanceIS increased the expression of adhesion molecules of endothelial cells exhibiting a concentration and duration dependent pattern. Simvastatin did not demonstrate any effect on IS-associated endothelial activation.  相似文献   

16.
Oxygen free radicals and the systemic inflammatory response   总被引:12,自引:0,他引:12  
Closa D  Folch-Puy E 《IUBMB life》2004,56(4):185-191
The generation of oxygen free radicals is known to be involved in the development of the systemic inflammatory response syndrome. In addition to their actions as noxious mediators generated by inflammatory cells, these molecules play also a crucial role contributing to the onset and progression of inflammation in distant organs. In the early stages of the process, free radicals exert their actions via activation of nuclear factors, as NFkappaB or AP-1, that induce the synthesis of cytokines. In later stages, endothelial cells are activated due to the synergy between free radicals and cytokines, promoting the synthesis of inflammatory mediators and adhesion molecules. Finally, free radicals exert their toxic effects at the site of inflammation by reacting with different cell components, inducing loss of function and cell death. This review focuses on progress in the understanding the different actions of free radicals at the sequential stages of the development of the systemic inflammatory response.  相似文献   

17.
Chronic kidney disease (CKD) has recently emerged as a major risk factor for cardiovascular pathology. CKD patients display accelerated atherosclerotic process, leading to circulatory complications. However, it is currently not clear how uremic conditions accelerate atherosclerosis. Apoptosis is an important homeostatic regulator of vascular smooth cells under pathological conditions. In the present study, we explored the regulation of apoptosis in cells of the vascular wall in the uremic context. We analysed the expression and regulation of the proteins of the BCL2 family that play an essential role in apoptosis. Our results, obtained in mice and primary human smooth muscle cells exposed to two uremic toxins, point to the existence of an alteration in expression and function of one pro-apoptotic member of this family, the protein BAD. We explore the regulation of BAD by uremic toxins and report the sensitization of vascular smooth muscle cells to apoptosis upon BAD induction.  相似文献   

18.

Introduction  

Advanced glycation end products (AGEs) are produced and can accumulate during chronic inflammation, as might be present in patients with rheumatoid arthritis (RA). AGEs are involved in the development of cardiovascular disease. The aim of this study is to evaluate whether AGEs are increased in patients with long-standing RA and whether AGE accumulation is related to disease activity, disease severity and measures of (premature) atherosclerosis, such as endothelial activation, endothelial dysfunction and intima media thickness (IMT).  相似文献   

19.
Advanced Glycation End Products (AGEs) are toxins that are involved in structural and functional alterations of several organs and tissues, resulting in various pathologies. Several types of AGEs have been described but carboxymethyllysine (CML) is the major antigenic AGE compound. In this study, three different immunogenic carrier proteins (KLH, keyhole limpet hemocyanin; BSA, bovine serum albumin; and HSA, human serum albumin) were modified by glycation. The glycated molecules were used to produce epitope-specific monoclonal antibodies able to recognize the CML domain and to detect uremic toxins in the serum of patients with chronic kidney disease (CKD). A competitive ELISA was standardized in order to quantify CML in the sera of CKD patients. An increase in uremic toxins can compromise the clinical condition of these patients, thus, the detection and quantification of these toxins should contribute to a better management and understanding of this disease.  相似文献   

20.
Epidemiologic and animal studies have shown that exposure to particulate matter air pollution (PM) is a risk factor for the development of atherosclerosis. Whether PM-induced lung and systemic inflammation is involved in this process is not clear. We hypothesized that PM exposure causes lung and systemic inflammation, which in turn leads to vascular endothelial dysfunction, a key step in the initiation and progression of atherosclerosis. New Zealand White rabbits were exposed for 5 days (acute, total dose 8 mg) and 4 wk (chronic, total dose 16 mg) to either PM smaller than 10 mum (PM(10)) or saline intratracheally. Lung inflammation was quantified by morphometry; systemic inflammation was assessed by white blood cell and platelet counts and serum interleukin (IL)-6, nitric oxide, and endothelin levels. Endothelial dysfunction was assessed by vascular response to acetylcholine (ACh) and sodium nitroprusside (SNP). PM(10) exposure increased lung macrophages (P<0.02), macrophages containing particles (P<0.001), and activated macrophages (P<0.006). PM(10) increased serum IL-6 levels in the first 2 wk of exposure (P<0.05) but not in weeks 3 or 4. PM(10) exposure reduced ACh-related relaxation of the carotid artery with both acute and chronic exposure, with no effect on SNP-induced vasodilatation. Serum IL-6 levels correlated with macrophages containing particles (P=0.043) and ACh-induced vasodilatation (P=0.014 at week 1, P=0.021 at week 2). Exposure to PM(10) caused lung and systemic inflammation that were both associated with vascular endothelial dysfunction. This suggests that PM-induced lung and systemic inflammatory responses contribute to the adverse vascular events associated with exposure to air pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号