首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.  相似文献   

2.
Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. ‘Creso’ × ‘Pedroso’ were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the ‘Creso’ × ‘Pedroso’ cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the ‘Creso’ × ‘Pedroso’ segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the ‘Creso’ × ‘Pedroso’ durum-wheat population has revealed some QTL that had not been previously identified.  相似文献   

3.
4.
Worldwide, salinity is a major environmental stress affecting agricultural production. Sodium (Na+) exclusion has long been recognised as a mechanism of salinity tolerance (ST) in cereals and several molecular markers have been suggested for breeding. However, there have been no empirical studies to show that selection for Na+ exclusion markers could improve grain yield in bread wheat under dryland salinity. In six field trials, a bread wheat mapping population was grown to validate Na+ exclusion quantitative trait loci (QTL) identified earlier in hydroponics, to determine the impact of Na+ exclusion on grain yield, and to identify QTL for yield-related traits. The traits included grain yield, grain number per m2, 1,000-grain weight, maturity, plant height, and leaf Na+ and K+ concentrations. The presence of numerous QTL with minor effects for most traits indicated the genetic complexity of these traits, and thus limited prospects for pyramiding at present. Considerable QTL-by-environment interactions were observed, with the stable QTL generally being co-located with maturity or early vigour/height genes, which demonstrates the importance of measuring major agronomic traits in order to discover genuine QTL for ST. Several QTL for seedling biomass and Na+ exclusion identified earlier in hydroponics were also detected in field trials but with marginal impact on grain yield. These results suggest that selection for Na+ exclusion and the use of hydroponics-based seedling assays may not necessarily result in improved ST. However, as this is the first report of its kind, there is an urgent need for testing other mapping populations in realistic environments to discover novel ST-QTL for breeding programs. In the meantime, grain yield QTL independent of maturity and height may offer potential to improve ST.  相似文献   

5.
6.
In order to identify quantitative trait loci (QTLs) controlling agronomic trait variation and their consistency under Mediterranean conditions in barley, a progeny of 167 recombinant inbred lines (RILs) and the parents Tadmor and Er/Apm, originating from the Mediterranean basin, were grown under Mediterranean conditions in 1995, 1996, 1997 and 1999. For the 2 first years (M95 and G96), one replicate was grown, but for the latter (M97 and M99) two rainfed (rain) and two irrigated (ir) replicates were produced. M95, G96, M97rain, M97ir, M99rain and M99ir were considered as six different environments and were compared in terms of their meteorological conditions and water supply. Grain yield and yield components were assessed, as well as heading date and plant height. Highly significant differences were noted between environments. QTLs were obtained from each environment separately and from a multiple environment analysis (simple interval mapping and simplified composite interval mapping). Despite heterogeneity between environments, numerous QTLs were common to several environments. This was particularly true for traits like plant height and thousand-grain weight. The most reliable QTLs which explained the largest part of the phenotypic variation were obtained for plant height on chromosomes 3 (3H) and 6 (6H). The multiple-environment analysis provided an opportunity to identify consistent QTLs for agronomic traits over six Mediterranean environments. A total of 24 consistent QTLs were detected. Out of these, 11 presented main effects, seven presented QTL×E interaction, and six presented both effects. In addition, 18 of the consistent QTLs were common to other published work and six seemed specific to this study. These latter QTLs could be involved in Mediterranean adaptive specificities or could be specific to the studied genetic background. Finally, when the rainfed and the irrigated environments of M97 were considered separately, a total of 16 QTLs presenting main effects over the two water conditions were identified, whereas five QTLs seemed dependent on the water conditions. Received: 31 January 2001 / Accepted: 19 February 2001  相似文献   

7.
Variability in superovulatory response is a limiting factor for animal breeding programs using Multiple Ovulation and Embryo Transfer (MOET) nucleus schemes. To evaluate genetic factors affecting superovulory response, 1036 multiple ovulation records from 475 Brazilian Nellore embryo donors (daughters of 139 sires), 2.2-20.5-year olds, were analyzed. Traits used to evaluate superovulatory response included the number of palpable corpora lutea (CL), the total number of recovered structures (RS), and the number of viable embryos (VE). Two data sets were used: data from the first flush only or data from the first three flushes. Genetic parameter estimations were carried out using Restricted Maximum Likelihood (REML) methodology, with single- and multiple-trait animal models. According to the data set used, heritability estimates ranged from 0.47 to 0.57 for CL, from 0.20 to 0.65 for VE, and from 0 to 0.34 for RS, and were higher for the data set that used only the first flushing only. For the first flush, genetic correlations were 0.43 between CL and SF, 0.01 between CL and VE, and 0.73 between SF and VE. Repeatability estimates ranged from 0.47 to 0.51. In conclusion, the use of data from the first flush only might result in better estimates of genetic parameters for MOET traits in Nellore females. Furthermore, moderate to high values for repeatability suggested that selection for a high response to superovulation could be made after the first flush.  相似文献   

8.
小麦种子活力性状的遗传变异和相关研究   总被引:8,自引:0,他引:8  
本研究利用12个普通小麦品种对10个种子活力性状的遗传变异和相关研究,表明除正常幼苗百分率外,其余种子活力性状在品种间均存在显著的差异。种子贮藏物质转换效率、电导率两个性状问及与其它性状均无显著的遗传相关,因此对他们的选择不会影响到其它性状。通径分析表明幼苗干重主要取决于种子贮藏物质转换效率、种子贮藏物质利用速率;发芽指数主要由平均发芽时间决定。电导率、发芽势、幼苗于重、种子干重、发芽指数、种子贮藏物质消耗比率6个性状表现中到高的遗传力、遗传变异系数和相对遗传进展,指明通过遗传育种手段改良这些性状是可能的。  相似文献   

9.
10.
Incongruence between conventional and molecular systematics has left the delineation of many species unresolved. Reef‐building corals are no exception, with phenotypic plasticity among the most plausible explanations for alternative morphospecies. As potential molecular signatures of phenotypic plasticity, epigenetic processes may contribute to our understanding of morphospecies. We compared genetic and epigenetic variation in Caribbean branching Porites spp., testing the hypothesis that epigenetics—specifically, differential patterns of DNA methylation—play a role in alternative morphotypes of a group whose taxonomic status has been questioned. We used reduced representation genome sequencing to analyse over 1,000 single nucleotide polymorphisms and CpG sites in 27 samples of Porites spp. exhibiting a range of morphotypes from a variety of habitats in Belize. We found stronger evidence for genetic rather than epigenetic structuring, identifying three well‐defined genetic groups. One of these groups exhibited significantly thicker branches, and branch thickness was a better predictor of genetic groups than depth, habitat or symbiont type. In contrast, no clear epigenetic patterns emerged with respect to phenotypic or habitat variables. While there was a weak positive correlation between pairwise genetic and epigenetic distance, two pairs of putative clones exhibited substantial epigenetic differences, suggesting a strong environmental effect. We speculate that epigenetic patterns are a complex mosaic reflecting diverse environmental histories superimposed over a relatively small heritable component. Given the role of genetics in branching Porites spp. morphospecies we were able to detect with genomewide sequencing, use of such techniques throughout the geographic range of these corals may help settle their phylogeny.  相似文献   

11.
12.
Summary Genetic control of tiller number, grain number, grain weight, harvest index and grain yield in six generations, along with the biparentals, F3s, F2xparental progeny, and F2xF1 progeny were investigated in an intervarietal cross of bread wheat involving two highly competitive varieties, WL711 and HD 2009. The performance of F1, B1, B2, F2, × p1, F2 × P2 and F2 × F1 progeny was midway between the parents involved with respect to all the evaluated characters. The biparental progeny excelled the mean performance of their corresponding F2 and F3 progeny in tiller number, seed weight and grain yield. The estimates of variance components obtained from the two models deployed were almost similar. Considerable additive genetic variance was observed for grains per spike, seed weight and grain yield while dominance variance was more pronounced for harvest index. The additive-dominance model was adequate for grains per spike and harvest index. Epistatic effects of additive × additive and additive × dominance type for tiller number and grain yield, and of additive × dominance type for seed weight were observed. The digenic epistatic model was inadequate for explaining the nature of gene action for tiller number, seed weight and grain yield. The studies indicated that non-allelic interactions should not be ignored in formulating wheat breeding programmes and that a biparental approach could be adopted as an extremely useful tool for enhancing genetic variability and the creation of transgressive segregants. The usefulness of breeding methodologies utilising a biparental approach is discussed.  相似文献   

13.
Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.  相似文献   

14.
15.
16.
Genetic effects and genotype×environment (GE) interaction effects on the cooking quality traits of indica rice (Oryza sativa L.) were analyzed based on a genetic model for quantitative traits of triploid endosperm in cereal crops. Nine cytoplasmic male-sterile lines as females and 5 restoring lines as males were used in an incomplete diallel cross over 2 years. The cooking quality traits studied were observed to be mainly controlled by genetic effects, but GE interaction effects, especially for amylose content (AC) and alkali spreading score (ASS), were also indicated. Among the genetic effects, seed direct effects and maternal effects were the main components of AC and ASS, respectively; cytoplasmic effects were the main components of gel consistency (GC). Among the GE interaction effects, AC and ASS were mainly affected by maternal interaction effects and GC by direct interaction effects. Additive effects and/or additive interaction effects were the main factors controlling the performance of rice cooking quality traits except for GC which was affected by dominant interaction effects. For AC and GC, there were seed heterosis and/or maternal heterosis. The predicated genetic effects indicated that four parents were better than the others in improving the rice cooking quality traits of the progenies. It was shown that genetic heterosis and GE interaction heterosis were important, especially for amylose content trait in early season indica rice.  相似文献   

17.
To understand the origin and evolution of common wheat, chloroplast (ct) and nuclear DNA variations were studied in five hexaploid and three tetraploid wheat subspecies. Based on chloroplast simple sequence repeats at 24 loci, they were classified into two major plastogroups. Plastogroup I consisted of 11 plastotypes, including the major plastotype H10 that occurred at the highest frequency (59%) in common wheat. Plastogroup II consisted of five plastotypes and occurred in eight out of 27 accessions of T. aestivum ssp. spelta and one accession of ssp. aestivum. As for nuclear DNA variations, AFLP data using 10 primer sets revealed two major clades of a phylogenetic tree constructed by UPGMA (unweighted pair-group method with arithmetic mean), one consisting of common wheat and the other of emmer wheat. The clade of common wheat was further divided into two major and six minor subclades. One of the major subclades consisted only of non-free-threshing ssp. spelta accessions, which were grouped into two clusters, one consisting only of accessions with plastogroup I ctDNA and the other with both plastogroups I and II. T. aestivum ssp. macha, another non-free-threshing common wheat, formed the other cluster. Taken together, our data indicate the existence of at least two maternal lineages in common wheat and support the hypothesis that European spela wheat originated in Europe separately from other groups of common wheat.  相似文献   

18.
Growth light intensities largely determine photosynthesis, biomass, and grain yield of cereal crops. To explore the genetic basis of light responses of biomass and Researchphotosynthetic parameters in wheat(Triticum aestivum L.),a quantitative trait locus(QTL) analysis was carried out in a doubled haploid(DH) population grown in low light(LL),medium light(ML), and high light(HL), respectively. The results showed that the wheat seedlings grown in HL produced more biomass with lower total chlorophyll content(Chl), carotenoid content, and maximum photochemical efficiency of photosystem II(Fv/Fm) while the wheat seedlings grown in LL produced less biomass with higher Chl compared with those grown in ML. In total, 48 QTLs were identified to be associated with the investigated parameters in relation to growth light intensities. These QTLs were mapped to 15 chromosomes which individually explained6.3%–36.0% of the phenotypic variance, of which chromo-somes 3A, 1D, and 6B were specifically involved in LL response, 5D and 7A specifically involved in ML response,and 4B specifically involved in HL response. Several light-responsive QTLs were co-located with QTLs for photosynthetic parameters, biomass, and grain weight under various conditions which may provide new hints to uncover the genetic control of photosynthesis, biomass, and grain weight.  相似文献   

19.
High yield and wide adaptation are principal targets of wheat breeding but are hindered by limited knowledge on genetic basis of agronomic traits and abiotic stress tolerances. In this study, 277 wheat accessions were phenotyped across 30 environments with non‐stress, drought‐stressed, heat‐stressed, and drought‐heat‐stressed treatments and were subjected to genome‐wide association study using 395 681 single nucleotide polymorphisms. We detected 295 associated loci including consistent loci for agronomic traits across different treatments and eurytopic loci for multiple abiotic stress tolerances. A total of 22 loci overlapped with quantitative trait loci identified by biparental quantitative trait loci mapping. Six loci were simultaneously associated with agronomic traits and abiotic stress tolerance, four of which fell within selective sweep regions. Selection in Chinese wheat has increased the frequency of superior marker alleles controlling yield‐related traits in the four loci during past decades, which conversely diminished favourable genetic variation controlling abiotic stress tolerance in the same loci; two promising candidate paralogous genes colocalized with such loci, thereby providing potential targets for studying the molecular mechanism of stress tolerance–productivity trade‐off. These results uncovering promising alleles controlling agronomic traits and/or multiple abiotic stress tolerances, providing insights into heritable covariation between yield and abiotic stress tolerance, will accelerate future efforts for wheat improvement.  相似文献   

20.
The objective of the current work was to analyse the variability of high and low molecular mass (HMM and LMM) glutenin subunits, along with some morphological characteristics in sixty Spanish accessions of rivet wheat (Triticum turgidum L. ssp. turgidum). The lines were grouped in sixteen botanical varieties and five additional types, according the morphological criteria. Up to 13 allelic variants (four alleles for the Glu-A1 locus and nine alleles for the Glu-B1 locus) and 34 B-LMMGs patterns were found in the evaluated lines. The current data indicated a clear reduction of morphological variability, along with an asymmetric distribution of the alleles and patterns for seed storage proteins. This polymorphism could be useful for enlarging the genetic background of modern durum wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号