首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Drosophila visual transduction cascade is embedded in the rhabdomeres of photoreceptor cells and culminates in the opening of the two ion channels, TRP and TRPL. TRPL translocates from the rhabdomeres to the cell body upon illumination and vice versa when flies are kept in the dark. Here, we studied the mechanisms underlying the light-dependent internalization of TRPL. Co-localization of TRPL and rhodopsin in endocytic particles revealed that TRPL is internalized by a vesicular transport pathway that is also utilized, at least partially, for rhodopsin endocytosis. TRPL internalization is attenuated under light conditions that result in a high rate of rhodopsin internalization and is highest in orange light that result in very little rhodopsin internalization. In line with a canonical vesicular transport pathway, we found that rab proteins, Rab5 and RabX4, are required for the internalization of TRPL into the cell body. Our results provide insight into stimulus-dependent internalization of a prominent member of the TRP superfamily.  相似文献   

2.
Signaling at the plasma membrane is modulated by up- and downregulation of signaling proteins. A prominent example for this type of regulation is the Drosophila TRPL ion channel that changes its spatial distribution within the photoreceptor cell. In dark-raised flies TRPL is localized in the rhabdomeral photoreceptor membrane and it translocates to the cell body upon illumination. It has been shown that TRPL translocation depends on the activation of the phototransduction cascade and requires the presence of functional rhodopsin as well as Ca2+-influx through a second lightactivated ion channel, TRP. However, little is known about the cell biological mechanism underlying TRPL translocation. Here we describe a FRT/FLP screen designed to isolate mutants defective in TRPL internalization based on the localization of eGFP-tagged TRPL in the eyes of living flies. We mutated chromosome arms 2L, 2R and 3R and isolated 12 mutants that failed to internalize TRPL. We found that four mutants did not complement genes known to affect TRPL translocation, which are trp, ninaE and inaD. Two of the isolated mutants represent new alleles of trp and ninaE. The trp allele contains a premature stop codon after amino acid 884, whereas the ninaE allele has a mutation resulting in the substitution P193S. As determined biochemically no TRP or rhodopsin protein, respectively, was expressed in the eyes of these mutants. The absence of TRP or rhodopsin in the isolated mutants readily explains the defect in TRPL internalization and proves the feasibility of our genetic screen.  相似文献   

3.
Mechanisms of light adaptation in Drosophila photoreceptors   总被引:1,自引:0,他引:1  
Phototransduction in Drosophila is mediated by a phospholipase C (PLC) cascade culminating in activation of transient receptor potential (TRP) channels. Ca(2+) influx via these channels is required for light adaptation, but although several molecular targets of Ca(2+)-dependent feedback have been identified, their contribution to adaptation is unclear. By manipulating cytosolic Ca(2+) via the Na(+)/Ca(2+) exchange equilibrium, we found that Ca(2+) inhibited the light-induced current (LIC) over a range corresponding to steady-state light-adapted Ca(2+) levels (0.1-10 microM Ca(2+)) and accurately mimicked light adaptation. However, PLC activity monitored with genetically targeted PIP(2)-sensitive ion channels (Kir2.1) was first inhibited by much higher (>/= approximately 50 microM) Ca(2+) levels, which occur only transiently in vivo. Ca(2+)-dependent inhibition of PLC, but not the LIC, was impaired in mutants (inaC) of protein kinase C (PKC). The results indicate that light adaptation is primarily mediated downstream of PLC and independently of PKC by Ca(2+)-dependent inhibition of TRP channels. This is interpreted as a strategy to prevent inhibition of PLC by global steady-state light-adapted Ca(2+) levels, whereas rapid inhibition of PLC by local Ca(2+) transients is required to terminate the response and ensures that PIP(2) reserves are not depleted during stimulation.  相似文献   

4.
Illumination of Drosophila photoreceptor cells induces multi-facet responses, which include generation of the photoreceptor potential, screening pigment migration and translocation of signaling proteins which is the focus of recent extensive research. Translocation of three signaling molecules is covered in this review: (1) Light-dependent translocation of arrestin from the cytosol to the signaling membrane, the rhabdomere, determines the lifetime of activated rhodopsin. Arrestin translocates in PIP3 and NINAC myosin III dependent manner, and specific mutations which disrupt the interaction between arrestin and PIP3 or NINAC also impair the light-dependent translocation of arrestin and the termination of the response to light. (2) Activation of Drosophila visual G protein, DGq, causes a massive and reversible, translocation of the alpha subunit from the signaling membrane to the cytosol, accompanied by activity-dependent architectural changes. Analysis of the translocation and the recovery kinetics of DGq(alpha) in wild-type flies and specific visual mutants indicated that DGq(alpha) is necessary but not sufficient for the architectural changes. (3) The TRP-like (TRPL) but not TRP channels translocate in a light-dependent manner between the rhabdomere and the cell body. As a physiological consequence of this light-dependent modulation of the TRP/TRPL ratio, the photoreceptors of dark-adapted flies operate at a wider dynamic range, which allows the photoreceptors enriched with TRPL to function better in darkness and dim background illumination. Altogether, signal-dependent movement of signaling proteins plays a major role in the maintenance and function of photoreceptor cells.  相似文献   

5.
Intracellular Ca2+ signalling evoked by Ca2+ mobilizing agonists, like angiotensin II in the adrenal gland, involves the activation of inositol(1,4,5)trisphosphate(InsP3)-mediated Ca2+ release from internal stores followed by activation of a Ca2+ influx termed capacitative calcium entry. Here we report the amino acid sequence of a functional capacitative Ca2+ entry (CCE) channel that supports inward Ca2+ currents in the range of the cell resting potential. The expressed CCE channel opens upon depletion of Ca2+ stores by InsP3 or thapsigargin, suggesting that the newly identified channel supports the CCE coupled to InsP3 signalling.  相似文献   

6.
Drosophila phototransduction results in the opening of two classes of cation channels, composed of the channel subunits transient receptor potential (TRP), TRP-like (TRPL), and TRPgamma. Here, we report that one of these subunits, TRPL, is translocated back and forth between the signaling membrane and an intracellular compartment by a light-regulated mechanism. A high level of rhabdomeral TRPL, characteristic of dark-raised flies, is functionally manifested in the properties of the light-induced current. These flies are more sensitive than flies with no or reduced TRPL level to dim background lights, and they respond to a wider range of light intensities, which fit them to function better in darkness or dim background illumination. Thus, TRPL translocation represents a novel mechanism to fine tune visual responses.  相似文献   

7.
Contrary to early predictions of sperm competition theory, postcopulatory sexual selection favoring increased investment per sperm (e.g., sperm size, sperm quality) has been demonstrated in numerous organisms. We empirically demonstrate for Drosophila melanogaster that both sperm quality and sperm quantity independently contribute to competitive male fertilization success. In addition to these independent effects, there was a significant interaction between sperm quality and quantity that suggests an internal positive reinforcement on selection for sperm quality, with selection predicted to intensify as investment per sperm increases and the number of sperm competing declines. The mechanism underlying the sperm quality advantage is elucidated through examination of the relationship between female sperm-storage organ morphology and the differential organization of different length sperm within the organ. Our results exemplify that primary sex cells can bear secondary sexual straits.  相似文献   

8.
In Drosophila, a phospholipase C-mediated signaling cascade links photoexcitation of rhodopsin to the opening of the TRP/TRPL channels. A lipid product of the cascade, diacylglycerol (DAG) and its metabolite(s), polyunsaturated fatty acids (PUFAs), have both been proposed as potential excitatory messengers. A crucial enzyme in the understanding of this process is likely to be DAG lipase (DAGL). However, DAGLs that might fulfill this role have not been previously identified in any organism. In this work, the Drosophila DAGL gene, inaE, has been identified from mutants that are defective in photoreceptor responses to light. The inaE-encoded protein isoforms show high sequence similarity to known mammalian DAG lipases, exhibit DAG lipase activity in vitro, and are highly expressed in photoreceptors. Analyses of norpA inaE double mutants and severe inaE mutants show that normal DAGL activity is required for the generation of physiologically meaningful photoreceptor responses.  相似文献   

9.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms.  相似文献   

10.
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P(2)] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

11.
12.
13.
The dynamic localization of proteins within cells is often determined by environmental stimuli. In retinal photoreceptors, light exposure results in the massive translocation of three key signal transduction proteins, transducin, arrestin and recoverin, into and out of the outer segment compartment where phototransduction takes place. This phenomenon has rapidly taken the center stage of photoreceptor cell biology, thanks to the introduction of new quantitative and transgenic approaches. Here, we discuss evidence that intracellular protein translocation contributes to adaptation of photoreceptors to diurnal changes in ambient light intensity and summarize the current debate on whether it is driven by diffusion or molecular motors.  相似文献   

14.
Photoreceptor cells have a remarkable capacity to adapt the sensitivity and speed of their responses to ever changing conditions of ambient illumination. Recent studies have revealed that a major contributor to this adaptation is the phenomenon of light-driven translocation of key signaling proteins into and out of the photoreceptor outer segment, the cellular compartment where phototransduction takes place. So far, only two such proteins, transducin and arrestin, have been established to be involved in this mechanism. To investigate the extent of this phenomenon we examined additional photoreceptor proteins that might undergo light-driven translocation, focusing on three Ca(2+)-binding proteins, recoverin and guanylate cyclase activating proteins 1 (GCAP1) and GCAP2. The changes in the subcellular distribution of each protein were assessed quantitatively using a recently developed technique combining serial tangential sectioning of mouse retinas with Western blot analysis of the proteins in the individual sections. Our major finding is that light causes a significant reduction of recoverin in rod outer segments, accompanied by its redistribution toward rod synaptic terminals. In both cases the majority of recoverin was found in rod inner segments, with approximately 12% present in the outer segments in the dark and less than 2% remaining in that compartment in the light. We suggest that recoverin translocation is adaptive because it may reduce the inhibitory constraint that recoverin imposes on rhodopsin kinase, an enzyme responsible for quenching the photo-excited rhodopsin during the photoresponse. To the contrary, no translocation of rhodopsin kinase itself or either GCAP was identified.  相似文献   

15.
R C Hardie  B Minke 《Neuron》1992,8(4):643-651
Invertebrate phototransduction is an important model system for studying the ubiquitous inositol-lipid signaling system. In the transient receptor potential (trp) mutant, one of the most intensively studied transduction mutants of Drosophila, the light response quickly declines to baseline during prolonged intense light. Using whole-cell recordings from Drosophila photoreceptors, we show that the wild-type response is mediated by at least two functionally distinct classes of light-sensitive channels and that both the trp mutation and a Ca2+ channel blocker (La3+) selectively abolish one class of channel with high Ca2+ permeability. Evidence is also presented that Ca2+ is necessary for excitation and that Ca2+ depletion mimics the trp phenotype. We conclude that the recently sequenced trp protein represents a class of light-sensitive channel required for inositide-mediated Ca2+ entry and suggest that this process is necessary for maintained excitation during intense illumination in fly photoreceptors.  相似文献   

16.
17.
18.
《Current biology : CB》2023,33(13):2632-2645.e6
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
Five different, well-characterized mutants of the R1–6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1–6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1–6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1–6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1–6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1–6 rhodopsin in the nina E mutants. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号