首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A class of anti-virulence compounds, the salicylidene acylhydrazides, has been widely reported to block the function of the type three secretion system of several Gram-negative pathogens by a previously unknown mechanism. In this work we provide the first identification of bacterial proteins that are targeted by this group of compounds. We provide evidence that their mode of action is likely to result from a synergistic effect arising from a perturbation of the function of several conserved proteins. We also examine the contribution of selected target proteins to the pathogenicity of Yersinia pseudotuberculosis and to expression of virulence genes in Escherichia coli O157.  相似文献   

2.
3.
Tandon A  Sinha S 《Bioinformation》2011,5(8):310-314
Matrix Metalloproteinase are family of enzymes responsible for degradation of extracellular matrix. MMP9 (gelatinase B) is one of the common matrix metalloproteinase that is associated with tissue destruction in a number of disease states such as rheumatoid arthiritis, fibrotic lung disease, dilated cardiomyopathy, as well as cancer invasion and metastasis. Recent study demonstrates that increased expression of MMP9 results in augmentation of myopathy with increased inflammation and fibernecrosis. Previous studies do not provide any conclusive information related to structural specificity of MMP9 inhibitors towards its active site, but with the availability of experimental structures it is now possible to study the structural specificity of MMP9 inhibitors. In light of availability of this information, we have applied docking and molecular dynamics approach to study the binding of inhibitors to the active site of MMP9. Three categories of inhibitor consisting of sulfonamide hydroxamate, thioester, and carboxylic moieties as zinc binding groups (ZBG) were chosen in the present study. Our docking results demonstrate that thioester based zinc binding group gives favourable docking scores as compared to other two groups. Molecular Dynamics simulations further reveal that tight binding conformation for thioester group has high specificity for MMP9 active site. Our study provides valuable insights on inhibitor specificity of MMP9 which provides valuable hints for future design of potent inhibitors and drugs.  相似文献   

4.
Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFRalpha3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.  相似文献   

5.
The interaction of Yersinia pseudotuberculosis porin solubilized in deoxycholate with the S- and R-forms of endogenous lipopolysaccharide (LPS) was studied by the quenching of intrinsic protein fluorescence. The samples of S-LPS differed both in the length of O-specific polysaccharide (n = 1 and 4) and in the acylation degree of the 3-hydroxytetradecanoic acid residues of the lipid A moiety (12-66%). R-LPS (12%) binding to porin was found to occur with positive cooperativity on two integrated structural regions of the R-LPS macromolecule, namely, core oligosaccharide and lipid A. The mode of porin interaction with low-acylated S-LPSs (15 or 20%) coincided with a model involving three types of binding sites. The shape of Scatchard curves of binding indicates that a complex formation between porin and low-acylated S-LPS is cooperative at low and moderate ligand concentration, whereas at near-saturating LPS concentrations porin binds to LPS independently on two types of binding sites. The O-specific polysaccharide chain in the S-LPS macromolecule increases the affinity of its interaction with porin in comparison with R-LPS–porin binding. A significant increase (to 66%) in the degree of S-LPS acylation substantially changed its porin-binding character: the process becomes anti-cooperative with lowered affinity. Thus, the features of LPS–porin interaction significantly depend on the conformational changes in the LPS molecule due to expanding of its hydrophobic region.  相似文献   

6.
Structural insights into substrate binding by the molecular chaperone DnaK   总被引:8,自引:0,他引:8  
How substrate affinity is modulated by nucleotide binding remains a fundamental, unanswered question in the study of 70 kDa heat shock protein (Hsp70) molecular chaperones. We find here that the Escherichia coli Hsp70, DnaK, lacking the entire alpha-helical domain, DnaK(1-507), retains the ability to support lambda phage replication in vivo and to pass information from the nucleotide binding domain to the substrate binding domain, and vice versa, in vitro. We determined the NMR solution structure of the corresponding substrate binding domain, DnaK(393-507), without substrate, and assessed the impact of substrate binding. Without bound substrate, loop L3,4 and strand beta3 are in significantly different conformations than observed in previous structures of the bound DnaK substrate binding domain, leading to occlusion of the substrate binding site. Upon substrate binding, the beta-domain shifts towards the structure seen in earlier X-ray and NMR structures. Taken together, our results suggest that conformational changes in the beta-domain itself contribute to the mechanism by which nucleotide binding modulates substrate binding affinity.  相似文献   

7.
Lipid A isolated from lipopolysaccharide of Yersinia pseudotuberculosis was used for immunization of rabbits to afford antisera to lipid A with titers of 1:640 in the passive hemolysis test. Exhaustion of immune serume with sheep erythrocytes decreased antibody titers up to 1:160. Authentic samples of 2-(DL-3-hydroxytetradecanoyl)amino-2-deoxy-D-glucose 6-phosphate, 2-tetradecanoylamino-2-deoxy-D-glucose 6-phosphate and 2-acetamido-2-deoxy-D-glucose 6-phosphate have been synthesized in order to carry out a comparative study of inhibitory activity of these compounds and lipid A using a system of lipid A and antiserum to lipid A. As a result, the immunodominant moiety of the lipid A of Y. pseudotuberculosis proved to contain a D-glucosamine residue acylated with 3-hydroxytetradecanoic acid at the amino group. The nature of the fatty acid acylating the amino group of glucosamine does not play an important role in the structure of immunodominant moiety of lipid A.  相似文献   

8.
Studies were done to determine the usefulness of dilute alkali (KOH) treatment of meat samples for direct isolation of Yersinia enterocolitica and Yersinia pseudotuberculosis, without enrichment. Virulent Y. enterocolitica and Y. pseudotuberculosis in pork contaminated with 10(2), 10(3), and 10(4) cells per g survived the direct KOH treatment and were never recovered by using KOH postenrichment treatment. From 6 (4.8%) of 125 samples of retail ground pork, four biotype 4 serotype O3 and one biotype 3B serotype O3 strains of Y. enterocolitica and one Y. pseudotuberculosis serotype 4b strain were recovered by using direct KOH treatment without enrichment. As these isolations were attained without using enrichment cultural procedures, they represent an important time-saving alternative to simplify and speed isolation of Yersinia spp. from meat.  相似文献   

9.
A combined application of statistical molecular design (SMD), quantitative structure–activity relationship (QSAR) modeling and prediction of new active compounds was effectively used to develop salicylidene acylhydrazides as inhibitors of type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. SMD and subsequent synthesis furnished 50 salicylidene acylhydrazides in high purity. Based on data from biological evaluation in T3S linked assays 18 compounds were classified as active and 25 compounds showed a dose-dependent inhibition. The 25 compounds were used to compute two multivariate QSAR models and two multivariate discriminant analysis models were computed from both active and inactive compounds. Three of the models were used to predict 4416 virtual compounds in consensus and eight new compounds were selected as an external test set. Synthesis and biological evaluation of the test set in Y. pseudotuberculosis and the intracellular pathogen Chlamydia trachomatis validated the models. Y. pseudotuberculosis and C. trachomatis cell-based infection models showed that compounds identified in this study are selective and non-toxic inhibitors of T3S dependent virulence.  相似文献   

10.
11.
The cytotoxic activity of L-asparaginases from Yersinia pseudotuberculosis and from Erwinia carotovora were investigated in vitro using human T-lymphoblastic leukemia (Jurkat and Molt-4) and also solid tumor cell lines MCF-7 (human breast adenocarcinoma), LnCap (human prostate carcinoma), NGUK1 (rat Gasser node neurinoma). E.coli L-asparaginase produced by Medak (Germany) was used as a reference preparation. The data obtained indicate that Y. pseudotuberculosis L-asparaginase significantly inhibits growth of leukemic and solid tumor cells. Its antitumor activity is comparable to that of the reference preparation of L-asparaginase (Medak). These results suggest that the recombinant L-asparaginase can be used for the development of new preparations for the therapy of different types of tumors.  相似文献   

12.
13.
Studies were done to determine the usefulness of dilute alkali (KOH) treatment of meat samples for direct isolation of Yersinia enterocolitica and Yersinia pseudotuberculosis, without enrichment. Virulent Y. enterocolitica and Y. pseudotuberculosis in pork contaminated with 10(2), 10(3), and 10(4) cells per g survived the direct KOH treatment and were never recovered by using KOH postenrichment treatment. From 6 (4.8%) of 125 samples of retail ground pork, four biotype 4 serotype O3 and one biotype 3B serotype O3 strains of Y. enterocolitica and one Y. pseudotuberculosis serotype 4b strain were recovered by using direct KOH treatment without enrichment. As these isolations were attained without using enrichment cultural procedures, they represent an important time-saving alternative to simplify and speed isolation of Yersinia spp. from meat.  相似文献   

14.
The invasin protein of the pathogenic Yersinia pseudotuberculosis mediates entry of the bacterium into cultured mammalian cells by binding several beta 1 chain integrins. In this study, we identified the region of invasin responsible for cell recognition. Thirty-two monoclonal antibodies directed against invasin were isolated, and of those, six blocked cell attachment to invasin. These six antibodies recognized epitopes within the last 192 amino acids of invasin. Deletion mutants of invasin and maltose-binding protein (MBP)--invasin fusion proteins were generated and tested for cell attachment. All of the invasin derivatives that carried the carboxyl-terminal 192 amino acids retained cell binding activity. One carboxyl-terminal invasin fragment and seven MBP--invasin fusion proteins were purified. The purified derivatives that retained binding activity inhibited bacterial entry into cultured mammalian cells. These results indicated that the carboxyl-terminal 192 amino acids of invasin contains the integrin-binding domain, even though this region does not contain the tripeptide sequence Arg-Gly-Asp.  相似文献   

15.
Endoglin, a type I membrane glycoprotein expressed as a disulfide-linked homodimer on human vascular endothelial cells, is a component of the transforming growth factor (TGF)-β receptor complex and is implicated in a dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia as well as in preeclampsia. It interacts with the type I TGF-β signaling receptor activin receptor-like kinase (ALK)1 and modulates cellular responses to Bone Morphogenetic Protein (BMP)-9 and BMP-10. Structurally, besides carrying a zona pellucida (ZP) domain, endoglin contains at its N-terminal extracellular region a domain of unknown function and without homology to any other known protein, therefore called the orphan domain (OD). In this study, we have determined the recognition and binding ability of full length ALK1, endoglin and constructs encompassing the OD to BMP-9 using combined methods, consisting of surface plasmon resonance and cellular assays. ALK1 and endoglin ectodomains bind, independently of their glycosylation state and without cooperativity, to different sites of BMP-9. The OD comprising residues 22 to 337 was identified among the present constructs as the minimal active endoglin domain needed for partner recognition. These studies also pinpointed to Cys350 as being responsible for the dimerization of endoglin. In contrast to the complete endoglin ectodomain, the OD is a monomer and its small angle X-ray scattering characterization revealed a compact conformation in solution into which a de novo model was fitted.  相似文献   

16.
17.
18.
19.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (cryo-EM). Docking of tetratricopeptide repeat (TPR)-containing subunits indicates that they likely form a scaffold-like outer shell, mediating assembly of the complex and providing potential binding sites for regulators and substrates. Quantitative determination of subunit stoichiometry indicates multiple copies of specific subunits, consistent with a total APC/C mass of approximately 1.7 MDa. Moreover, yeast APC/C forms both monomeric and dimeric species. Dimeric APC/C is a more active E3 ligase than the monomer, with greatly enhanced processivity. Our data suggest that multimerisation and/or the presence of multiple active sites facilitates the APC/C's ability to elongate polyubiquitin chains.  相似文献   

20.
EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host''s neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ββα-metal finger catalytic core augmented by an interesting ‘finger-loop’ interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号