首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.  相似文献   

5.
6.
7.
Many anatomical differences exist between males and females; these are manifested on a molecular level by different hormonal environments. Although several molecular differences in adult tissues have been identified, a comprehensive investigation of the gene expression differences between males and females has not been performed. We surveyed the expression patterns of 13,977 mouse genes in male and female hypothalamus, kidney, liver, and reproductive tissues. Extensive differential gene expression was observed not only in the reproductive tissues, but also in the kidney and liver. The differentially expressed genes are involved in drug and steroid metabolism, osmotic regulation, or as yet unresolved cellular roles. In contrast, very few molecular differences were observed between the male and female hypothalamus in both mice and humans. We conclude that there are persistent differences in gene expression between adult males and females. These molecular differences have important implications for the physiological differences between males and females.  相似文献   

8.
The involvement of FSH and triiodothyronine (T(3)) in circadian clocks was investigated using immature granulosa cells of ovaries during the progress of cell maturation. Granulosa cells were prepared from preantral follicles of mouse Period2 (Per2)-dLuc reporter gene transgenic rats injected subcutaneously with the synthetic nonsteroidal estrogen diethylstilbestrol. Analysis of the cellular clock of the immature granulosa cells was performed partly using a serum-free culture system. Several bioluminescence oscillations of Per2-dLuc promoter activity were generated in the presence of FSH + fetal bovine serum, but not in the presence of either FSH or serum. As revealed by bioluminescence recording and analysis of clock gene expression, the granulosa cells lack the functional cellular clock at the immature stage, although Lhr was greatly expressed during the period of cell maturation. The granulosa cells gained a strong circadian rhythm of bioluminescence during stimulation with FSH, whereas LH reset the cellular clock of matured granulosa cells. During strong circadian rhythms of clock genes, the Star gene showed significant expression in matured granulosa cells. In contrast, T(3) showed an inhibitory effect on the development of the functional cellular clock during the period of cell maturation. These results indicate that FSH provides a cue for the development of the functional cellular clock of the immature granulosa cells, and T(3) blocks the development of the cellular clock.  相似文献   

9.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

10.
? Flowering is a major developmental transition and its timing in relation to environmental conditions is of crucial importance to plant fitness. Understanding the genetic basis of flowering time variation is important to determining how plants adapt locally. ? Here, we investigated flowering time variation of Capsella bursa-pastoris collected from different latitudes in China. We also used a digital gene expression (DGE) system to generate partial gene expression profiles for 12 selected samples. ? We found that flowering time was highly variable and most strongly correlated with day length and winter temperature. Significant differences in gene expression between early- and late-flowering samples were detected for 72 candidate genes for flowering time. Genes related to circadian rhythms were significantly overrepresented among the differentially expressed genes. ? Our data suggest that circadian rhythms and circadian clock genes play an important role in the evolution of flowering time, and C. bursa-pastoris plants exhibit expression differences for candidate genes likely to affect flowering time across the broad range of environments they face in China.  相似文献   

11.
12.
13.
14.
Although overt diurnal rhythms of behavior do not begin until well after birth, molecular studies suggest that the circadian clock may begin much earlier at a cellular level: mouse embryonic fibroblasts, for example, already possess robust clocks. By multiple criteria, we found no circadian clock present in mouse embryonic stem cells. Nevertheless, upon their differentiation into neurons, circadian gene expression was observed. In the first steps along the pathway from ES cells to neurons, a neural precursor cell (NPC) line already showed robust circadian oscillations. Therefore, at a cellular level, the circadian clock likely begins at the very earliest stages of mammalian development.  相似文献   

15.
16.
17.
18.
19.
In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.  相似文献   

20.
Cholesterol (CH) homeostasis in the liver is regulated by enzymes of CH synthesis such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and catabolic enzymes such as cytochrome P-450, family 7, subfamily A, and polypeptide 1 (CYP7A1). Since a circadian clock controls the gene expression of these enzymes, these genes exhibit circadian rhythm in the liver. In this study, we examined the relationship between a diet containing CH and/or cholic acid (CA) and the circadian regulation of Hmgcr, low-density lipoprotein receptor (Ldlr), and Cyp7a1 gene expression in the mouse liver. A 4-wk CA diet lowered and eventually abolished the circadian expression of these genes. Not only clock genes such as period homolog 2 (Drosophila) (Per2) and brain and muscle arnt-like protein-1 (Bmal1) but also clock-controlled genes such as Hmgcr, Ldlr, and Cyp7a1 showed a reduced and arrhythmic expression pattern in the liver of Clock mutant mice. The reduced gene expression of Cyp7a1 in mice fed a diet containing CA or CH + CA was remarkable in the liver of Clock mutants compared with wild-type mice, and high liver CH accumulation was apparent in Clock mutant mice. In contrast, a CH diet without CA only elevated Cyp7a1 expression in both wild-type and Clock mutant mice. The present findings indicate that normal circadian clock function is important for the regulation of CH homeostasis in the mouse liver, especially in conjunction with a diet containing high CH and CA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号