首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.  相似文献   

2.
Cargo selection in vesicular transport: the making and breaking of a coat   总被引:7,自引:1,他引:6  
Intracellular traffic is mediated by vesicular/tubular carriers. The carriers are formed by the activity of cytosolic coat proteins that are recruited to their target membranes and deform these membranes into buds and vesicles. Specific interactions between recruited coat subunits and short peptide sequences (transport motifs) on cargo proteins direct the incorporation of cargo into budded vesicles. Here, we focus on cargo selection reactions mediated by COPII and AP-2/clathrin vesicle coat complexes to explore common mechanisms by which coat assembly support localized and selective cargo sorting. Recent findings suggest that multiple, low-affinity interactions are employed in a cooperative manner to support coat assembly and enable cargo recognition. Thus low-binding affinities between coat subunits and transport motifs are transiently transformed into high-avidity, multivalent and selective interactions at vesicle bud sites. The temporal and regulated nature of the interactions provide the key to cargo selection.  相似文献   

3.
Clathrin is a vesicle coat protein involved in the assembly of membrane and cargo into transport vesicles at the plasma membrane and on certain intracellular organelles. Recently, crystal structures of two separate parts of the clathrin heavy chain, a fragment of the proximal leg and the N-terminal domain, have been analysed, providing the first high-resolution data for a vesicle coat protein. Viewing these structures in the context of a hexagonal barrel coat, recently determined to 21 A by cryo-electron microscopy, provides new insights into the assembly of clathrin coats.  相似文献   

4.
The interplay between clathrin-coated vesicles and cell signalling   总被引:1,自引:0,他引:1  
Internalization of cargo proteins and lipids at the cell surface occurs in both a constitutive and signal-regulated manner through clathrin-mediated and other endocytic pathways. Clathrin-coated vesicle formation is a principal uptake route in response to signalling events. Protein-lipid and protein-protein interactions control both the targeting of signalling molecules and their binding partners to membrane compartments and the assembly of clathrin coats. An emerging aspect of membrane trafficking research is now addressing how signalling cascades and vesicle coat assembly and subsequently disassembly are integrated.  相似文献   

5.
The clathrin adaptor complex AP-2 functions in the assembly of clathrin-coated vesicles at the plasma membrane where it serves to couple endocytic vesicle formation to the selection of membrane cargo proteins. Recent evidence suggests that binding of tyrosine-based endocytic sorting motifs may induce a conformational change within the AP-2 adaptor complex that could enhance its interaction with other cargo molecules and with the membrane. We report here that soluble tyrosine-based endocytic sorting motif peptides facilitate clathrin/AP-2 recruitment to liposomal membranes and induce adaptor oligomerization even in the absence of a lipid bilayer. These effects are specific for endocytic motifs of the type Yxxphi whereas peptides corresponding to NPxY- or di-leucine-containing sorting signals are ineffective. Our data may help to explain how the highly cooperative assembly of clathrin and adaptors could be linked to the selection of membrane cargo proteins.  相似文献   

6.
Most eukaryotes utilize a single pool of clathrin to assemble clathrin-coated transport vesicles at different intracellular locations. Coat assembly is a cyclical process. Soluble clathrin triskelia are recruited to the membrane surface by compartment-specific adaptor and/or accessory proteins. Adjacent triskelia then pack together to assemble a polyhedral lattice that progressively invaginates, budding off the membrane surface encasing a nascent transport vesicle that is quickly uncoated. Using total internal reflection fluorescence microscopy to follow clathrin dynamics close to the cell surface, we find that the majority of labeled clathrin structures are relatively static, moving vertically in and out of the evanescent field but with little lateral motion. A small minority shows rapid lateral and directed movement over micrometer distances. Adaptor proteins, including the alpha subunit of AP-2, ARH, and Dab2 are also relatively static and exhibit virtually no lateral movement. A fluorescently labeled AP-2 beta2 subunit, incorporated into both AP-2 and AP-1 adaptor complexes, exhibits both types of behavior. This suggests that the highly motile clathrin puncta may be distinct from plasma membrane-associated clathrin structures. When endocytosed cargo molecules, such as transferrin or low density lipoprotein, are followed into cells, they exhibit even more lateral motion than clathrin, and gradually concentrate in the perinuclear region, consistent with classical endosomal trafficking. Importantly, clathrin partially colocalizes with internalized transferrin, but diverges as the structures move longitudinally. Thus, highly motile clathrin structures are apparently distinct from the plasma membrane, accompany transferrin, and contain AP-1, revealing an endosomal population of clathrin structures.  相似文献   

7.
Clathrin-coated vesicles mediate diverse processes such as nutrient uptake, downregulation of hormone receptors, formation of synaptic vesicles, virus entry, and transport of biosynthetic proteins to lysosomes. Cycles of coat assembly and disassembly are integral features of clathrin-mediated vesicular transport (Fig. 1a). Coat assembly involves recruitment of clathrin triskelia, adaptor complexes and other factors that influence coat assembly, cargo sequestration, membrane invagination and scission (Fig. 1a). Coat disassembly is thought to be essential for fusion of vesicles with target membranes and for recycling components of clathrin coats to the cytoplasm for further rounds of vesicle formation. In vitro, cytosolic heat-shock protein 70 (Hsp70) and the J-domain co-chaperone auxilin catalyse coat disassembly. However, a specific function of these factors in uncoating in vivo has not been demonstrated, leaving the physiological mechanism and significance of uncoating unclear. Here we report the identification and characterization of a Saccharomyces cerevisiae J-domain protein, Aux1. Inactivation of Aux1 results in accumulation of clathrin-coated vesicles, impaired cargo delivery, and an increased ratio of vesicle-associated to cytoplasmic clathrin. Our results demonstrate an in vivo uncoating function of a J domain co-chaperone and establish the physiological significance of uncoating in transport mediated by clathrin-coated vesicles.  相似文献   

8.
Light-chain-independent binding of adaptors, AP180, and auxilin to clathrin   总被引:5,自引:0,他引:5  
R Lindner  E Ungewickell 《Biochemistry》1991,30(37):9097-9101
Binding of coated vesicle assembly proteins to clathrin causes it to assemble into regular coat structures. The assembly protein fraction of bovine brain coated vesicles comprises AP180, auxilin, and HA1 and HA2 adaptors. Clathrin heavy chains, separated from their light chains, polymerize with unimpaired efficiency when assembly proteins are added. The reassembled coats were purified by sucrose gradient centrifugation and examined for composition by SDS-PAGE and immunoblotting. We found that all four major coat proteins are incorporated in the presence and absence of light chains. Moreover, each of the purified coat proteins is able to associate directly with clathrin heavy chains in preassembled cages as efficiently as with intact clathrin. We conclude that light chains are not essential for the interaction of AP180, auxilin, and HA1 and HA2 with clathrin.  相似文献   

9.
K M Huang  K D''Hondt  H Riezman    S K Lemmon 《The EMBO journal》1999,18(14):3897-3908
The major coat proteins of clathrin-coated vesicles are the clathrin triskelion and heterotetrameric associated protein (AP) complexes. The APs are thought to be involved in cargo capture and recruitment of clathrin to the membrane during endocytosis and sorting in the trans-Golgi network/endosomal system. AP180 is an abundant coat protein in brain clathrin-coated vesicles, and it has potent clathrin assembly activity. In Saccharomyces cerevisiae, there are 13 genes encoding homologs of heterotetrameric AP subunits and two genes encoding AP180-related proteins. To test the model that clathrin function is dependent on the heterotetrameric APs and/or AP180 homologs, yeast strains containing multiple disruptions in AP subunit genes, as well as in the two YAP180 genes, were constructed. Surprisingly, the AP deletion strains did not display the phenotypes associated with clathrin deficiency, including slowed growth and endocytosis, defective late Golgi protein retention and impaired cytosol to vacuole/autophagy function. Clathrin-coated vesicles isolated from multiple AP deletion mutants were morphologically indistinguishable from those from wild-type cells. These results indicate that clathrin function and recruitment onto membranes are not dependent upon heterotetrameric adaptors or AP180 homologs in yeast. Therefore, alternative mechanisms for clathrin assembly and coated vesicle formation, as well as the role of AP complexes and AP180-related proteins in these processes, must be considered.  相似文献   

10.
真核细胞内膜泡运输的分子机制   总被引:1,自引:0,他引:1  
真核细胞内一些蛋白质需靠膜泡进行定向运输,膜泡是在外衣蛋白的作用下形成的,根据外衣蛋白的不同,膜泡分为笼蛋白,COPⅠ和COPⅡ外衣膜泡,这些外衣膜泡分别在细胞内不同供膜(donor membrane)处形成,因为被运输蛋白具有分选信号可与供膜上相应的受体结合,所以能被包裹在特异的膜泡之中,在膜泡形成过程中,外衣蛋白在“芽生”膜泡的细胞质侧组装成笼状外衣,帮助“芽生”膜泡从供膜处脱落,一旦笼状外衣膜泡脱离供膜,笼状外衣蛋白便发生解聚而成为无衣膜泡,无衣膜泡在Rab蛋白的调控下可定向运输蛋白质,而解聚后的外衣蛋白可重新介导新的外衣膜泡形成。  相似文献   

11.
New fashions in vesicle coats   总被引:4,自引:0,他引:4  
Clathrin-coated vesicles are responsible for the sorting transport of membrane proteins within cells. Their co of the self-assembling protein clathrin, and adaptor r. interact with the vesicle cargo and localize clathrin tc Recently, novel clathrin-like and adaptor-like proteins identified. Here, Frances Brodsky discusses various in these findings, including the possibility that the novel expanded functions beyond the conventional roles of the in coated-vesicle formation. In this context, the mech which coats influence vesicle formation is reconsidere.  相似文献   

12.
Although genetic and biochemical studies suggest a role for Eps15 homology domain containing proteins in clathrin-mediated endocytosis, the specific functions of these proteins have been elusive. Eps15 is found at the growing edges of clathrin-coated pits, leading to the hypothesis that it participates in the formation of coated vesicles. We have evaluated this hypothesis by examining the effect of Eps15 on clathrin assembly. We found that although Eps15 has no intrinsic ability to assemble clathrin, it potently stimulates the ability of the clathrin adaptor protein, AP180, to assemble clathrin at physiological pH. We have also defined the binding sites for Eps15 on squid AP180. These sites contain an NPF motif, and peptides derived from these binding sites inhibit the ability of Eps15 to stimulate clathrin assembly in vitro. Furthermore, when injected into squid giant presynaptic nerve terminals, these peptides inhibit the formation of clathrin-coated pits and coated vesicles during synaptic vesicle endocytosis. This is consistent with the hypothesis that Eps15 regulates clathrin coat assembly in vivo, and indicates that interactions between Eps15 homology domains and NPF motifs are involved in clathrin-coated vesicle formation during synaptic vesicle recycling.  相似文献   

13.
Endocytosis is driven by a mechanism which is characterized by an orderly congregation of a large number of proteins which effectuate, first, formation of a coated vesicles, second, pinching off the vesicle and, third, regulated transport. True to the nature of many other proteins involved in multimolecular complexes, also endocytosis-associated proteins, such as Eps15, clathrin and AP-2, are characterized by distinct domains which mediate the protein-protein interactions. We now report that a group of well-established endocytosis and/or vesicular trafficking proteins possess a VHS domain, a recently described domain with an unknown function. We suggest that in these proteins VHS serves as a membrane targeting domain which by its specific features together with FYVE, SH3 and/or TAM domains, which are also present in some VHS-containing proteins, is involved in the stage-specific assembly of the endocytic machinery.  相似文献   

14.
The p24 proteins are transmembrane proteins of the endomembrane system that play a poorly defined role in vesicle traffic between the endoplasmic reticulum and the Golgi apparatus. Various lines of evidence indicate that p24 proteins fall into four subfamilies (alpha, beta, gamma, and delta) and that tetramers are assembled containing one representative from each subfamily; however, the nature of the protein-protein interactions within these hetero-oligomers is unknown. We have identified a lumenal segment of yeast p24beta (Emp24p) that is necessary for its assembly into p24 complexes. Replacement of 52 C-terminal residues of Emp24p with the corresponding sequence from Erv25p (p24delta) generates a chimeric protein able to replace Emp24p in p24 complexes that retain partial function in vivo, ruling out a role for the transmembrane and cytosolic domains in specifying p24 interactions. Substitution of a further 50 residues, encompassing a heptad repeat region, abolishes the ability of the chimera to replace Emp24p but instead creates a protein that resembles its Erv25p parent in its requirement for stabilization by Emp24p. These data point to a role for coiled-coil interactions in directing subfamily-specific assembly of p24 oligomers that project into the lumen of transport vesicles, where they may act to exclude secretory cargo from coat protein complex type I-coated retrograde transport vesicles.  相似文献   

15.
GGAs, a class of monomeric clathrin adaptors, are involved in the sorting of cargo at the trans-Golgi network of eukaryotic cells. They are modular structures consisting of the VHS, the GAT, hinge, and GAE domains, which have been shown to interact directly with cargo, ARF, clathrin, and accessory proteins, respectively. Previous studies have shown that GGAs interact with clathrin both in solution and in the cell, but it has yet been shown whether they assemble clathrin. We find that GGA1 promoted assembly of clathrin with complete assembly achieved when one GGA1 molecule is bound per heavy chain. In the presence of excess GGA1, we obtained the unusual stoichiometry of five GGA1s per heavy chain, and even at this stoichiometry the binding was not saturated. The assembled structures were mostly baskets, but approximately 10% of the structures were tubular with an average length of 180 +/- 40 nm and width of approximately 50 nm. The truncated GGA1 fragment consisting of the hinge+GAE domains bound to clathrin with similar affinity as the full-length molecule and polymerized clathrin into baskets. Unlike the full-length molecule, this fragment saturated the lattices at one molecule per heavy chain and assembled clathrin only into baskets. The separated hinge and GAE domains bound much weaker to clathrin than the intact molecule, and these domains do not significantly polymerize clathrin into baskets. We conclude that clathrin adaptor GGA1 is a clathrin assembly protein, but it is unique in its ability to polymerize clathrin into tubules.  相似文献   

16.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

17.
Clathrin-coated vesicles are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. AP-2 and AP180 are the resident coat proteins of clathrin-coated vesicles in nerve terminals, and interactions between these proteins could be important in vesicle dynamics. AP180 and AP-2 each assemble clathrin efficiently under acidic conditions, but neither protein will assemble clathrin efficiently at physiological pH. We find that there is a direct, clathrin-independent interaction between AP180 and AP-2 and that the AP180-AP-2 complex is more efficient at assembling clathrin under physiological conditions than is either protein alone. AP180 is phosphorylated in vivo, and in crude vesicle extracts its phosphorylation is enhanced by stimulation of casein kinase II, which is known to be present in coated vesicles. We find that recombinant AP180 is a substrate for casein kinase II in vitro and that its phosphorylation weakens both the binding of AP-2 by AP180 and the cooperative clathrin assembly activity of these proteins. We have localized the binding site for AP-2 to amino acids 623-680 of AP180. The AP180/AP-2 interaction can be disrupted by a recombinant AP180 fragment containing the AP-2 binding site, and this fragment also disrupts the cooperative clathrin assembly activity of the AP180-AP-2 complex. These results indicate that AP180 and AP-2 interact directly to form a complex that assembles clathrin more efficiently than either protein alone. Phosphorylation of AP180, by modulating the affinity of AP180 for AP-2, may contribute to the regulation of clathrin assembly in vivo.  相似文献   

18.
Coat proteins cycle between soluble and membrane-bound locations at the time of vesicle biogenesis and act to regulate the assembly of the vesicle coat that determines the specificity in cargo selection and the destination of the vesicle. A transmembrane cargo protein, an Arf GTPase, and a coat protein (e.g. COPs, APs, or GGAs) are minimal components required for budding of vesicles. Munc18 interacting proteins (MINTs) are a family of three proteins implicated in the localization of receptors to the plasma membrane. We show that MINTs bind Arfs directly, co-localize with Arf and the Alzheimer's precursor protein (beta-APP) to regions of the Golgi/trans-Golgi network, and can co-immunoprecipitate clathrin. We demonstrate that MINTs bind Arfs through a region of the PTB domain and the PDZ2 domain, and Arf-MINT interaction is necessary for the increased cellular levels of beta-APP produced by MINT overexpression. Knockdown (small interference RNA) experiments implicate beta-APP as a transmembrane cargo protein that works together with MINTs. We propose that MINTs are a family of Arf-dependent, vesicle-coat proteins that can regulate the traffic of beta-APP.  相似文献   

19.
A complete set of SNAREs in yeast   总被引:4,自引:1,他引:4  
Trafficking of cargo molecules through the secretory pathway relies on packaging and delivery of membrane vesicles. These vesicles, laden with cargo, carry integral membrane proteins that can determine with which target membrane the vesicle might productively fuse. The membrane fusion process is highly conserved in all eukaryotes and the central components driving membrane fusion events involved in vesicle delivery to target membranes are a set of integral membrane proteins called SNAREs. The yeast Saccharomyces cerevisiae has served as an extremely useful model for characterizing components of membrane fusion through genetics, biochemistry and bioinformatics, and it is now likely that the complete set of SNAREs is at hand. Here, we present the details from the searches for SNAREs, summarize the domain structures of the complete set, review what is known about localization of SNAREs to discrete membranes, and highlight some of the surprises that have come from the search.  相似文献   

20.
Clathrin-associated adaptor protein (AP) complexes are major structural components of clathrin-coated vesicles, functioning in clathrin coat assembly and cargo selection. We have carried out a systematic biochemical and genetic characterization of AP complexes in Saccharomyces cerevisiae. Using coimmunoprecipitation, the subunit composition of two complexes, AP-1 and AP-2R, has been defined. These results allow assignment of the 13 potential AP subunits encoded in the yeast genome to three AP complexes. As assessed by in vitro binding assays and coimmunoprecipitation, only AP-1 interacts with clathrin. Individual or combined disruption of AP-1 subunit genes in cells expressing a temperature-sensitive clathrin heavy chain results in accentuated growth and alpha-factor pheromone maturation defects, providing further evidence that AP-1 is a clathrin adaptor complex. However, in cells expressing wild-type clathrin, the same AP subunit deletions have no effect on growth or alpha-factor maturation. Furthermore, gel filtration chromatography revealed normal elution patterns of clathrin-coated vesicles in cells lacking AP-1. Similarly, combined deletion of genes encoding the beta subunits of the three AP complexes did not produce defects in clathrin-dependent sorting in the endocytic and vacuolar pathways or alterations in gel filtration profiles of clathrin-coated vesicles. We conclude that AP complexes are dispensable for clathrin function in S. cerevisiae under normal conditions. Our results suggest that alternative factors assume key roles in stimulating clathrin coat assembly and cargo selection during clathrin-mediated vesicle formation in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号