共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayesian analysis of climate change impacts in phenology 总被引:3,自引:0,他引:3
The identification of changes in observational data relating to the climate change hypothesis remains a topic of paramount importance. In particular, scientifically sound and rigorous methods for detecting changes are urgently needed. In this paper, we develop a Bayesian approach to nonparametric function estimation. The method is applied to blossom time series of Prunus avium L., Galanthus nivalis L. and Tilia platyphyllos SCOP. The functional behavior of these series is represented by three different models: the constant model, the linear model and the one change point model. The one change point model turns out to be the preferred one in all three data sets with considerable discrimination of the other alternatives. In addition to the functional behavior, rates of change in terms of days per year were also calculated. We obtain also uncertainty margins for both function estimates and rates of change. Our results provide a quantitative representation of what was previously inferred from the same data by less involved methods. 相似文献
2.
Spottiswoode CN Tøttrup AP Coppack T 《Proceedings. Biological sciences / The Royal Society》2006,273(1605):3023-3029
Global warming has led to earlier spring arrival of migratory birds, but the extent of this advancement varies greatly among species, and it remains uncertain to what degree these changes are phenotypically plastic responses or microevolutionary adaptations to changing environmental conditions. We suggest that sexual selection could help to understand this variation, since early spring arrival of males is favoured by female choice. Climate change could weaken the strength of natural selection opposing sexual selection for early migration, which would predict greatest advancement in species with stronger female choice. We test this hypothesis comparatively by investigating the degree of long-term change in spring passage at two ringing stations in northern Europe in relation to a synthetic estimate of the strength of female choice, composed of degree of extra-pair paternity, relative testes size and degree of sexually dichromatic plumage colouration. We found that species with a stronger index of sexual selection have indeed advanced their date of spring passage to a greater extent. This relationship was stronger for the changes in the median passage date of the whole population than for changes in the timing of first-arriving individuals, suggesting that selection has not only acted on protandrous males. These results suggest that sexual selection may have an impact on the responses of organisms to climate change, and knowledge of a species' mating system might help to inform attempts at predicting these. 相似文献
3.
An increasing number of studies demonstrate that plant and animal phenologies such as the timing of bird migration have been advancing over the globe, likely as a result of climate change. Even closely related species differ in their phenological responses, and the sources of this variation are poorly established. We used a large, standardized dataset of first arrival dates (FAD) of migratory birds to test the effects of phylogenetic relationships and various life-history and ecological traits on the degree to which different species adapt to climate change by earlier migration in spring. Using the phylogenetic comparative method, we found that the advancement of FAD was greater in species with more generalized diet, shorter migration distance, more broods per year, and less extensive prebreeding molt. In turn, we found little evidence that FAD trends were influenced by competition for mating (polygamy or extra-pair paternity) and breeding opportunities (cavity nests). Our findings were robust to several potentially confounding effects. These evolutionary correlations, coupled with the low levels of phylogenetic dependence we found, indicate that avian migration phenology adapts to climate change as a species-specific response. Our results suggest that the degree of this response is fundamentally shaped by constraints and selection pressures of the species' life history, and less so by the intensity of sexual selection. 相似文献
4.
Monitoring studies find that the timing of spring bird migration has advanced in recent decades, especially in Europe. Results for autumn migration have been mixed. Using data from Powdermill Nature Reserve, a banding station in western Pennsylvania, USA, we report an analysis of migratory timing in 78 songbird species from 1961 to 2006. Spring migration became significantly earlier over the 46-year period, and autumn migration showed no overall change. There was much variation among species in phenological change, especially in autumn. Change in timing was unrelated to summer range (local vs. northern breeders) or the number of broods per year, but autumn migration became earlier in neotropical migrants and later in short-distance migrants. The migratory period for many species lengthened because late phases of migration remained unchanged or grew later as early phases became earlier. There was a negative correlation between spring and autumn in long-term change, and this caused dramatic adjustments in the amount of time between migrations: the intermigratory periods of 10 species increased or decreased by > 15 days. Year-to-year changes in timing were correlated with local temperature (detrended) and, in autumn, with a regional climate index (detrended North Atlantic Oscillation). These results illustrate a complex and dynamic annual cycle in songbirds, with responses to climate change differing among species and migration seasons. 相似文献
5.
6.
7.
8.
Global surface temperature has increased markedly over the last 100 years. This increase has a variety of implications for
human societies, and for ecological systems. One of the most obvious ways ecosystems are affected by global climate change
is through alteration of organisms’ developmental timing (phenology). We used annual botanical surveys that documented the
first flowering for an array of species from 1976 to 2003 to examine the potential implications of climate change for plant
development. The overall trend for these species was a progressively earlier flowering time. The two earliest flowering taxa
(Galanthus and Crocus) also exhibited the strongest shift in first flowering. We detected a significant trend in climate suggesting higher temperatures
in winter and spring over the sampling interval and found a significant relationship between warming temperatures and first
flowering time for some species. Although 60% of the species in our study flowered earlier over the sampling interval, the
remaining species exhibited no statistically detectable change. This variation in response is ostensibly associated with among-species
variation in the role of climate cues in plant development. Future work is needed to isolate specific climate cues, and to
link plant phenology to the physiological processes that trigger plant development. 相似文献
9.
Hiromi Kobori Takuya Kamamoto Hayashi Nomura Kohei Oka Richard Primack 《Ecological Research》2012,27(1):173-180
Observations made largely from summer breeding sites in Europe and North America have been used to document the effects of
climate change on many bird species. We extend these studies by examining 23 years of observations between 1986 and 2008 of
six winter bird species made by citizens at a city park in Yokohama, Japan. Bird species arrive in autumn and spend the winter
in the area, before departing in the late winter or spring. On average, birds species are arriving 9 days later than in the
past and are departing on average 21 days earlier, meaning that the average duration of their stay in Yokohama is about 1 month
shorter now than in the past. Patterns of changes over time varied among species, but departure dates changed for more species
than did arrival dates. Dates of departure and arrival were sometimes correlated with monthly average temperatures—later arrivals
and earlier departures were associated with warmer temperatures. In addition, interannual variation in arrival and departure
dates were strongly correlated across species, suggesting that species were responding to the same or similar environmental
cues. This study provides a clear demonstration of the value of using citizens to make observations that contribute to research
in climate change biology. 相似文献
10.
Climate change and its role in altering biological interactions and the likelihood of invasion by introduced species in marine systems have received increased attention in recent years. It is difficult to forecast how climate change will influence community function or the probability of invasion as it alters multiple marine environmental parameters including rising water temperature, lower salinity and pH. In the present study, we correlate changes in environmental parameters to shifts in species composition in a subtidal community in Newcastle, NH through comparison of two, 3‐year periods separated by 23 years (1979–1981 and 2003–2005). We observed concurrent shifts in climate related factors and in groups of organisms that dominate the marine community when comparing 1979–1981 to 2003–2005. The 1979–1981 community was dominated by perennial species (mussels and barnacles). In contrast, the 2003–2005 community was dominated by annual native and invasive tunicates (sea‐squirts). We also observed a shift in the environmental factors that characterized both communities. Dissolved inorganic nitrogen and phosphate characterized the 1979–1981 community while sea surface temperature, pH, and chlorophyll a characterized the 2003–2005 community. Elongated warmer water temperatures, through the fall and early winter months of the 2000s, extended the growing season of native organisms and facilitated local dominance of invasive species. Additionally, beta‐diversity was greater between 2003–2005 than 1979–1981 and driven by larger numbers of annual species whose life‐history characteristics (e.g., timing and magnitude of recruitment, growth and mortality) are driven by environmental parameters, particularly temperature. 相似文献
11.
Plant phenology is strongly controlled by climate and has consequently become one of the most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000 records for six phenological events of 29 perennial plant species monitored from 1943 to 2003 for a comprehensive assessment of plant phenological responses to climate change in the Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were studied together during a complete annual cycle before phenological events to determine their relative importance and potential seasonal carry‐over effects. Warm and dry springs under a positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the growing season. Spatial variability of dates (range among sites) was also reduced during warm and dry years, especially for spring events. Climate during previous weeks to phenophases occurrence had the greatest impact on plants, although all events were also affected by climate conditions several months before. Immediate along with delayed climate effects suggest dual triggers in plant phenology. Climatic models accounted for more than 80% of variability in flowering and leaf unfolding dates, and in length of the growing season, but for lower proportions in fruiting and leaf falling. Most part of year‐to‐year changes in dates was accounted for temperature, while precipitation and NAO accounted for <10% of dates' variability. In the case of flowering, insect‐pollinated species were better modelled by climate than wind‐pollinated species. Differences in temporal responses of plant phenology to recent climate change are due to differences in the sensitivity to climate among events and species. Spring events are changing more than autumn events as they are more sensitive to climate and are also undergoing the greatest alterations of climate relative to other seasons. In conclusion, climate change has shifted plant phenology in the Mediterranean region. 相似文献
12.
Rebecca Darbyshire Leanne Webb Ian Goodwin E. W. R. Barlow 《International journal of biometeorology》2014,58(6):1119-1133
Climate projection data were applied to two commonly used pome fruit flowering models to investigate potential differences in predicted full bloom timing. The two methods, fixed thermal time and sequential chill-growth, produced different results for seven apple and pear varieties at two Australian locations. The fixed thermal time model predicted incremental advancement of full bloom, while results were mixed from the sequential chill-growth model. To further investigate how the sequential chill-growth model reacts under climate perturbed conditions, four simulations were created to represent a wider range of species physiological requirements. These were applied to five Australian locations covering varied climates. Lengthening of the chill period and contraction of the growth period was common to most results. The relative dominance of the chill or growth component tended to predict whether full bloom advanced, remained similar or was delayed with climate warming. The simplistic structure of the fixed thermal time model and the exclusion of winter chill conditions in this method indicate it is unlikely to be suitable for projection analyses. The sequential chill-growth model includes greater complexity; however, reservations in using this model for impact analyses remain. The results demonstrate that appropriate representation of physiological processes is essential to adequately predict changes to full bloom under climate perturbed conditions with greater model development needed. 相似文献
13.
Nicola Saino Diego Rubolini Esa Lehikoinen Leonid V. Sokolov Andrea Bonisoli-Alquati Roberto Ambrosini Giuseppe Boncoraglio Anders P. M?ller 《Biology letters》2009,5(4):539-541
Phenological responses to climate change vary among taxa and across trophic levels. This can lead to a mismatch between the life cycles of ecologically interrelated populations (e.g. predators and prey), with negative consequences for population dynamics of some of the interacting species. Here we provide, to our knowledge, the first evidence that climate change might disrupt the association between the life cycles of the common cuckoo (Cuculus canorus), a migratory brood parasitic bird, and its hosts. We investigated changes in timing of spring arrival of the cuckoo and its hosts throughout Europe over six decades, and found that short-distance, but not long-distance, migratory hosts have advanced their arrival more than the cuckoo. Hence, cuckoos may keep track of phenological changes of long-distance, but not short-distance migrant hosts, with potential consequences for breeding of both cuckoo and hosts. The mismatch to some of the important hosts may contribute to the decline of cuckoo populations and explain some of the observed local changes in parasitism rates of migratory hosts. 相似文献
14.
The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses. 相似文献
15.
The diversity and spatiotemporal variation of avifauna in different settings of tropical coral reef-karst forests on the Hengchun Peninsula, Taiwan, were examined. The short-term effects on bird assemblages following two typhoons that severely impacted Hengchun were investigated. Line-transect census recorded 46 species of birds, dominated by forest-associated gleaning insectivores or omnivores, and 13% of the endemics of Taiwan. Prior to the typhoons, the continuous-canopy forest was close to the open forest setting in species evenness, but the species heterogeneity was lower and more variable. The continuous-canopy and open forests differed in overall avian composition, whereas two continuous-canopy forest settings were similar in composition. Typhoons did not significantly lower the mean numbers of either species or birds, nor affect the pattern of their spatial distribution in the forest settings. However, they did increase similarities in the species composition between the open and continuous-canopy settings, and caused a decrease in the similarity between forest edges and interiors. Overall, typhoons affected species composition more in the continuous-canopy forests than in the open setting, and more in interiors than in forest edges. This pattern corresponded to an increase in the species heterogeneity and species evenness in the forest interiors, indicating movements of birds from the edge toward the interior. Among different functional groups, gleaning omnivores tended to retain a pattern of higher abundance in the open forest setting than in the continuous-canopy forests, whereas the abundances of gleaning insectivores and cavity-nesting frugivores tended to decline in the latter or both settings. 相似文献
16.
Based on the 1961-2007 ground surface meteorological data from 558 meteorological stations in China, this paper analyzed the differences of agricultural climate resources in China different regions, and compared the change characteristics of the agricultural climate resources in 1961-1980 (period I) and 1981-2007 (period II), taking the year 1981 as the time node. As compared with period I, the mean annual temperature in China in period II increased by 0.6 degrees C, and the > or = 0 degrees C active accumulated temperature in the growth periods of chimonophilous crops and the > or = 10 degrees C active accumulated temperature in the growth periods of thermophilic crops increased averagely by 123.3 degrees C x d and 125.9 degrees C x d, respectively. In 1961-2007, the mean annual temperature increased most in Northeast China, and the > or = 10 degrees C active accumulated temperature in the growth periods of thermophilic crops increased most in South China. The whole year sunshine hours and the sunshine hours in the growth periods of chimonophilous crops and of thermophilic crops in period II decreased by 125.7 h, 32.2 h, and 53.6 h, respectively, compared with those in period I. In 1961-2007, the annual sunshine hours decreased most in the middle and lower reaches of Yangtze River, while the sunshine hours in the growth periods of chimonophilous crops and of thermophilic crops decreased most in North China and South China, respectively. In the whole year and in the growth periods of chimonophilous and thermophilic crops, both the precipitation and the reference crop evapotranspiration in this country all showed a decreasing trend, with the largest decrement in the precipitation in the whole year and in the growth periods of chimonophilous and thermophilic crops in North China, the largest decrement in the reference crop evapotranspiration in the whole year and in the growth periods of thermophilic crops in the middle and lower reaches of Yangtze River, and the largest decrement in the reference crop evapotranspiration in the growth periods of chimonophilous crops in Northwest China. In 1961-2007, the climate in China in the whole year and in the growth periods of thermophilic crops showed an overall tendency of warm and dry, and the climate in the growth periods of thermophilic crops became warm and dry in Southwest China, North China, and Northeast China, but warm and wet in the middle and lower reaches of Yangtze River, Northwest China, and South China, whereas the climate in the growth periods of chimonophilous crops became warm and dry in North China, but became warm and wet in Northwest China. 相似文献
17.
1. A number of long-term studies have shown that spring biological events have advanced in recent decades and that this is a response to climate change. In lentic systems, changes in phytoplankton phenology have been attributed to various directly climate-related processes including changes in the onset and duration of thermal stratification, earlier ice-break up and increased water temperature. Both indirect climatic drivers and non-climate drivers such as elevated grazing pressure and nutrient enrichment can also affect phenology.
2. This study investigated whether phenological trends in phytoplankton could be detected in a relatively short time series in a shallow, ice-free, polymictic lake with a high annual discharge and whether any such trends could be causally explained.
3. It was found that the centre of gravity of the spring chlorophyll a bloom advanced significantly by 1.6 days per year over a 15-year period. This was accompanied by a significant increase in water temperature of 0.12 °C per year which is high compared to published rates of change over longer time series. No direct effects of ice cover, stratification or water discharge rates could be linked to the advancement of the spring bloom. Instead, the shift in timing was attributed to an advance in the timing of the dominant spring diatom, Aulacoseira spp., instigated by a temperature-driven increase in replication rate leading to an earlier onset of silica (SiO2 ) limitation. 相似文献
2. This study investigated whether phenological trends in phytoplankton could be detected in a relatively short time series in a shallow, ice-free, polymictic lake with a high annual discharge and whether any such trends could be causally explained.
3. It was found that the centre of gravity of the spring chlorophyll a bloom advanced significantly by 1.6 days per year over a 15-year period. This was accompanied by a significant increase in water temperature of 0.12 °C per year which is high compared to published rates of change over longer time series. No direct effects of ice cover, stratification or water discharge rates could be linked to the advancement of the spring bloom. Instead, the shift in timing was attributed to an advance in the timing of the dominant spring diatom, Aulacoseira spp., instigated by a temperature-driven increase in replication rate leading to an earlier onset of silica (SiO
18.
Climate change has led to shifts in phenology in many species distributed widely across taxonomic groups. It is, however, unclear how we should interpret these shifts without some sort of a yardstick: a measure that will reflect how much a species should be shifting to match the change in its environment caused by climate change. Here, we assume that the shift in the phenology of a species' food abundance is, by a first approximation, an appropriate yardstick. We review the few examples that are available, ranging from birds to marine plankton. In almost all of these examples, the phenology of the focal species shifts either too little (five out of 11) or too much (three out of 11) compared to the yardstick. Thus, many species are becoming mistimed due to climate change. We urge researchers with long-term datasets on phenology to link their data with those that may serve as a yardstick, because documentation of the incidence of climate change-induced mistiming is crucial in assessing the impact of global climate change on the natural world. 相似文献
19.
Background and aims
Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N2 to a subarctic heath with an altered climate.Methods
We estimated N2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest).Results
N2 fixation activity was measured from late April to mid November and 33 % of all N2 was fixed outside the vascular plant growing season (Jun–Aug). This substantial amount underlines the importance of N2 fixation in the cold period. Warming increased N2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N2 fixation outside the treatment (tents present) period. Litter alone did not alter N2 fixation but in combination with warming N2 fixation increased, probably because N2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter.Conclusion
In subarctic heath, the current N2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N2 fixation in different directions and thereby complicate predictions of future N cycling. 相似文献20.
The effects of climate change on the phenology of selected Estonian plant, bird and fish populations 总被引:1,自引:0,他引:1
This paper summarises the trends of 943 phenological time-series of plants, fishes and birds gathered from 1948 to 1999 in Estonia. More than 80% of the studied phenological phases have advanced during springtime, whereas changes are smaller during summer and autumn. Significant values of plant and bird phases have advanced 5–20 days, and fish phases have advanced 10–30 days in the spring period. Estonia’s average air temperature has become significantly warmer in spring, while at the same time a slight decrease in air temperature has been detected in autumn. The growing season has become significantly longer in the maritime climate area of Western Estonia. The investigated phenological and climate trends are related primarily to changes in the North Atlantic Oscillation Index (NAOI) during the winter months. Although the impact of the winter NAOI on the phases decreases towards summer, the trends of the investigated phases remain high. The trends of phenophases at the end of spring and the beginning of summer may be caused by the temperature inertia of the changing winter, changes in the radiation balance or the direct consequences of human impacts such as land use, heat islands or air pollution. 相似文献