首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
During continuous irradiation with near-ultraviolet light (l = 36510 nm; 16 mW/mm(2)) for 2-3 min, live mammalian cells increased reversibly the intensity of one or more peaks of their autofluorescence spectrum from an initial ('ground') level to a two- to threefold higher ('active') level. The effect is characterized by the existence of two states of quantum efficiency and a mechanism of transition that expresses a threshold and a refractory period. It appears that mitochondria are the principal sources of the rising autofluorescence intensity; however, not all mitochondria are capable of expressing it. Studying cells from various organisms that belong to various branches of the phylogenetic tree, we found the rapid increase of autofluorescence only in placental mammalian cells. We speculate that the effect may point to the ability of placental mammalian mitochondria to generate pulsating light signals.  相似文献   

2.
Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio.  相似文献   

3.
In the present study, we have employed confocal laser scanning microscopy to investigate the effect that stimulation of mouse pancreatic acinar cells with the secretagogue cholecystokinin (CCK) has on mitochondrial activity. We have monitored changes in cytosolic as well as mitochondrial Ca2+ concentrations, mitochondrial membrane potential and FAD autofluorescence by loading the cells with fluo-3, rhod-2 or JC-1, respectively. Our results show that stimulation of cells with cholecystokinin led to release of Ca2+ from intracellular stores that then accumulated into mitochondria. In the presence of the hormone a depolarization of mitochondrial membrane potential was observed, which partially recovered; in addition a transient increase in FAD autofluorescence could be observed. Similarly, treatment of cells with thapsigargin induced increases in mitochondrial Ca2+ and FAD autofluorescence, and depolarized mitochondria. Pretreament of cells with thapsigargin blocked cholecystokinin-evoked changes. Similar results were obtained when the cells were incubated in the presence of rotenone, which blocks the mitochondrial electron transport chain. Our findings are consistent with changes in mitochondrial activity in response to stimulation of pancreatic acinar cells with cholecystokinin. Following stimulation, mitochondria take up Ca2+ that could in turn activate the mitochondrial machinery that may match the energy supply necessary for the cell function during secretion, suggesting that Ca2+ can act as a regulator of mitochondrial activity.  相似文献   

4.
Parotid acinar cells exhibit rapid cytosolic calcium signals ([Ca2+]i) that initiate in the apical region but rapidly become global in nature. These characteristic [Ca2+]i signals are important for effective fluid secretion, which critically depends on a synchronized activation of spatially separated ion fluxes. Apically restricted [Ca2+]i signals were never observed in parotid acinar cells. This is in marked contrast to the related pancreatic acinar cells, where the distribution of mitochondria has been suggested to contribute to restricting [Ca2+]i signals to the apical region. Therefore, the aim of this study was to determine the mitochondrial distribution and the role of mitochondrial Ca2+ uptake in shaping the spatial and temporal properties of [Ca2+]i signaling in parotid acinar cells. Confocal imaging of cells stained with MitoTracker dyes (MitoTracker Green FM or MitoTracker CMXRos) and SYTO dyes (SYTO-16 and SYTO-61) revealed that a majority of mitochondria is localized around the nucleus. Carbachol (CCh) and caged inositol 1,4,5-trisphosphate-evoked [Ca2+]i signals were delayed as they propagated through the nucleus. This delay in the CCh-evoked nuclear [Ca2+]i signal was abolished by inhibition of mitochondrial Ca2+ uptake with ruthenium red and Ru360. Likewise, simultaneous measurement of [Ca2+]i with mitochondrial [Ca2+] ([Ca2+]m), using fura-2 and rhod-FF, respectively, revealed that mitochondrial Ca2+ uptake was also inhibited by ruthenium red and Ru360. Finally, at concentrations of agonist that evoke[Ca2+]i oscillations, mitochondrial Ca2+ uptake, and a nuclear [Ca2+] delay, CCh also evoked a substantial increase in NADH autofluorescence. This autofluorescence exhibited a predominant perinuclear localization that was also sensitive to mitochondrial inhibitors. These data provide evidence that perinuclear mitochondria and mitochondrial Ca2+ uptake may differentially shape nuclear [Ca2+] signals but more importantly drive mitochondrial metabolism to generate ATP close to the nucleus. These effects may profoundly affect a variety of nuclear processes in parotid acinar cells while facilitating efficient fluid secretion.  相似文献   

5.
Image cytometry was applied to study the intracellular localization of autofluorescence and the influence of an oxidative stress on this emission. K562 erythroleukemia cancer cells were analyzed with a microspectrofluorometer, coupled with a Argon laser (Ar+) (363 nm). From each cell, 15 x 15 emission spectra were recorded in the 400-600 nm spectral range to generate a spectral image of autofluorescence. The intracellular locations of the autofluorescence emission and of the specific mitochondrial probe rhodamine 123 (R123) were matched. Under a 363 nm excitation, all spectra from K562 cells show equivalent profiles with a 455 nm maximum emission, near of reduced nicotinamide adenine dinucleotide-(Phosphate) solution (NAD(P)H) (465 nm maximum emission). The spatial distribution of autofluorescence is homogeneous and different from the one of R123. Hydrogen peroxide (H2O2) (200 microM) and menadione (Men) (5 microM) induce a weak spectral change and a decrease in autofluorescence intensity, down to 40% of the initial emission. Doxorubicin (Dox) induces a dose-dependent decrease in autofluorescence emission and a release of intracellular free radicals. When cells were pre-treated 1 h with 1 mM glutathione (GSH), Dox induces a lower free radicals release, no significant variation of autofluorescence intensity and a lower growth inhibitory effect. Images cytometry of autofluorescence suggest that the intracellular NAD(P)H would not be restricted to mitochondrial compartments. The release of free radicals was associated with a decrease in autofluorescence intensity, mainly attributed to NAD(P)H oxidation both inside and outside mitochondria.  相似文献   

6.
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.  相似文献   

7.
To determine how to utilize the green fluorescent protein (GFP) as a marker for subcellular localization and as a label for plant mitochondria in vivo, transgenic suspension cells and tobacco plants expressing GFP with and without a mitochondrial localization signal were generated. The first GFP form used, GFP1, is easily observable in cells with low autofluorescence, such as suspension cells or trichomes, but masked in green tissue. For the visualization of GFP in cells and tissues with high autofluorescence, such as leaf, the use of a very strong promoter (35S35SAMV), a highly expressed modified mGFP4 coding region and a brighter mutant form of GFP (S65T) was necessary. Confocal or two-photon laser scanning microscopy reveal a distinct subcellular localization of the fluorescence in cells expressing GFP or coxIVGFP. In cells expressing untargeted GFP, fluorescence accumulates in the nucleoplasm but is also distributed throughout the cytoplasm. It is excluded from vacuoles, nucleoli and from round bodies that are likely to be leucoplasts. In contrast, fluorescence is localized specifically to mitochondria in cells expressing coxIVGFP fusion protein as shown by co-localization with a mitochondrial-specific dye. This permits the direct observation of mitochondria and mitochondrial movements in living plant cells and tissues throughout plant development. Three-dimensional reconstruction of individual cells can give additional information about the distribution and numbers of mitochondria.  相似文献   

8.
9.
Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imaging of the autofluorescence intensities of fluorescent flavoproteins and NAD(P)H, showing inverse fluorescence behavior. The flavoprotein signal was colocalized with the potentiometric mitochondria-specific dye dimethylaminostyryl pyridyl methyl iodide (DASPMI), or with MitoTracker™ Green FM, a constitutive marker for mitochondria. Within individual myofibers we detected topological mitochondrial subsets with distinct flavoprotein autofluorescence levels, equally responding to induced rate changes of the oxidative phosphorylation. The flavoprotein autofluorescence levels of these subsets differed by a factor of four. This heterogeneity was substantiated by flow-cytometric analysis of flavoprotein and DASPMI fluorescence changes of individual mitochondria isolated from mice skeletal muscle. Our data provide direct evidence that mitochondria in single myofibers are distinct subsets at the level of an intrinsic fluorescent marker of the mitochondrial NAD–redox system. Under the present experimental conditions these subsets show similar functional responses.  相似文献   

10.
Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important functions (e.g. in Ca2+ homeostasis, apoptosis, thermogenesis, etc.), thus suggesting their region-specific specializations and intracellular heterogeneity. Although mitochondrial functional heterogeneity has been demonstrated for several cell types, its origin and role under physiological and, in particular, pathophysiological conditions, where the extent of heterogeneity may significantly increase, remain to be elucidated. The present work thus investigated the static and dynamic heterogeneity of mitochondria and mitochondrial function in various cell types in which mitochondria may cope with specific functions including cardiomyocytes, hepatocytes and some cultured carcinoma cells. Modern confocal and two-photon fluorescent microscopy was used for the investigation and direct imaging of region-specific mitochondrial function and heterogeneity. Analysis of the autofluorescence of mitochondrial flavoproteins in hepatocytes and carcinoma cells permitted significant intracellular heterogeneity of mitochondrial redox state to be demonstrated. Comparative homogeneity and clear colocalization of mitochondrial flavoproteins, membrane potential and calcium-sensitive probes were observed in both isolated cardiomyocytes and permeabilized myocardial fibers. After ischemia reperfusion, however, or under conditions of substrate deprivation, significant heterogeneity of all these parameters was detected. Some methodological issues, mechanistic aspects, possible metabolic consequences of mitochondrial functional heterogeneity and its impact under pathological conditions are discussed.  相似文献   

11.
The distant-optical interaction of the mitochondria through a guartz partition was studied. The effect of the interaction was evaluated from the change in the rate of oxygen consumption by the mitochondria. There was a significant lowering of oxygen consumption by the mitochondria during their optical contact with other mitochondria. The effect is assumed to be associated with a super-weak UV radiation that appears in the course of mitochondrial metabolism.  相似文献   

12.
Glucose-stimulated insulin secretion is a multistep process dependent on beta-cell metabolic flux. Our previous studies on intact pancreatic islets used two-photon NAD(P)H imaging as a quantitative measure of the combined redox signal from NADH and NADPH (referred to as NAD(P)H). These studies showed that pyruvate, a non-secretagogue, enters beta-cells and causes a transient rise in NAD(P)H. To further characterize the metabolic fate of pyruvate, we have now developed one-photon flavoprotein microscopy as a simultaneous assay of lipoamide dehydrogenase (LipDH) autofluorescence. This flavoprotein is in direct equilibrium with mitochondrial NADH. Hence, a comparison of LipDH and NAD(P)H autofluorescence provides a method to distinguish the production of NADH, NADPH, or both. Using this method, the glucose dose response is consistent with an increase in both NADH and NADPH. In contrast, the transient rise in NAD(P)H observed with pyruvate stimulation is not accompanied by a significant change in LipDH, which indicates that pyruvate raises cellular NADPH without raising NADH. In comparison, methyl pyruvate stimulated a robust NADH and NADPH response. These data provide new evidence that exogenous pyruvate does not induce a significant rise in mitochondrial NADH. This inability likely results in its failure to produce the ATP necessary for stimulated secretion of insulin. Overall, these data are consistent with either a restricted pyruvate dehydrogenase-dependent metabolism or a buffering of the NADH response by other metabolic mechanisms.  相似文献   

13.
Abstract: The mechanisms responsible for the accumulation of redox-active brain iron in normal senescence and in Parkinson's disease remain poorly understood. The aminothiol compound cysteamine (CSH) induces the appearance of autofluorescent, iron-rich cytoplasmic granules in cultured astroglia that are identical to glial inclusions that progressively accumulate in the aging periventricular brain. Both in situ and in culture, these glial inclusions appear to arise in the context of a generalized cellular stress (heat shock) response. Several laboratories have previously concluded that porphyrins and heme ferrous iron are responsible, respectively, for red-orange autofluorescence and nonenzymatic peroxidase activity in the glial inclusions. In the present study we found that, contrary to hypothesis, CSH suppresses the incorporation of the heme precursors δ-amino[14C]levulinic acid and [14C]glycine into astroglial porphyrin and heme in primary culture. Similar results were obtained when the cells were preloaded with radiolabeled heme precursors for 24 h before CSH treatment, suggesting that the latter directly inhibits porphyrin-heme biosynthesis rather than limiting precursor uptake by these cells. We also demonstrated that CSH exposure results in the sequestration of iron-59 by astroglial mitochondria (granule precursors). The results of this study suggest that stress-related trapping of nonheme iron by astroglial mitochondria may be an important mechanism underlying the pathological accumulation of redox-active iron in the basal ganglia of subjects with Parkinson's disease. CSH-treated astrocytes provide a useful model to investigate the role of stress-related dysregulation of neuroglial iron metabolism in the aging and degenerating nervous system.  相似文献   

14.
Histochemical detection of cytochrome oxidase activity in chicken growth plate revealed both positively and negatively stained mitochondria in chondrocytes of all zones, i.e., proliferative, pre-hypertrophic, hypertrophic, and calcifying zones. The proportion of positive to negative cells was lowest in the proliferative zone. As cytodifferentiation progressed, more positively stained cells were present. In positive cells all mitochondria were usually stained, and in negative cells all mitochondria were unstained. A few cells appeared to be in transition and contained both types of mitochondria. The results indicate that chondrocytes utilizing both aerobic and anaerobic metabolism are present in growth plate cartilage and that oxidative metabolism is favored in the more mature cells. The relationship of oxidative metabolism to calcification is discussed.  相似文献   

15.
Pre-meiotic cellular organisation of rice anthers has a great significance in pollen formation. We have used a combination of confocal laser and transmission electron microscopy (TEM) to characterise and differentiate organelles in pre-meiotic rice anthers. Along with the characteristic organelles in the cytoplasm the epidermal cells of the pre-meiotic rice anther are coated on their outer surface by a conspicuous bi-lamellate cuticle. Chloroplasts of the endothecium contain immature grana, thylakoids and also starch granules. These plastids clearly contain photosynthetic pigments as shown by autofluorescence in confocal microscope studies. Both confocal and TEM studies reveal clusters of mitochondria in the middle layer. The tapetum contains electron opaque ribosomes, bundles of mitochondria and plastids. The nuclei of the tapetum occupy a large volume of the cytoplasm indicating the onset of mitotic prophase. Intense Rhodamine 123 staining reveals that a major portion of the structurally indistinguishable organelles that were seen throughout the densely ribosomic cytoplasm of sporogenous cells are mitochondria.  相似文献   

16.
As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M.  相似文献   

17.
18.
Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.  相似文献   

19.
Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT's role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.  相似文献   

20.
Numerous studies on perinatal long-chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration in cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号