首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rolling Circle Amplification (RCA) of DNA is a sensitive and cost effective method for the rapid identification of pathogenic fungi without the need for sequencing. Amplification products can be visualized on 1% agarose gel to verify the specificity of probe-template binding or directly by adding fluorescent dyes. Fusarium Head Blight (FHB) is currently the world's largest threat to the production of cereal crops with the production of a range of mycotoxins as an additional risk. We designed sets of RCA padlock probes based on polymorphisms in the elongation factor 1-α (EF-1α) gene to detect the dominant FHB species, comprising lineages of the Fusarium graminearum species complex (FGSC). The method also enabled the identification of species of the Fusarium oxysporum (FOSC), the Fusarium incarnatum-equiseti (FIESC), and the Fusarium tricinctum (FTSC) species complexes, and used strains from the CBS culture collection as reference. Subsequently probes were applied to characterize isolates from wheat and wild grasses, and inoculated wheat kernels. The RCA assays successfully amplified DNA of the target fungi, both in environmental samples and in the contaminated wheat samples, while no cross reactivity was observed with uncontaminated wheat or related Fusarium species. As RCA does not require expensive instrumentation, the technique has a good potential for local and point of care screening for toxigenic Fusarium species in cereals.  相似文献   

2.
3.
Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50  103 nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.  相似文献   

4.
On the basis of aptamer-based rolling circle amplification (RCA) and magnetic beads (MBs), a highly sensitive electrochemical method was developed for the determination of Ochratoxin A (OTA). Initially, an amino-modified capture DNA was immobilized onto MBs for the following hybridization with an OTA aptamer and a phosphate labeled padlock DNA. In the presence of OTA, the aptamer would dissociate from the bioconjugate, and the padlock DNA would subsequently hybridize with the capture DNA to form a circular template with the aid of the T4 ligase. Next, capture DNA would act as primer to initiate a linear RCA reaction and hence generate a long tandem repeated sequences by phi29 DNA polymerase and dNTPs. Then, two quantum dots (QDs) labeled DNA probes were tagged on the resulted RCA product to indicate the OTA recognition event by electrochemical readout. This strategy, based on the novel design of OTA-mediated DNA circularization, the combination of RCA and double signal probes introduction, could detect OTA down to the level of 0.2 pg mL(-1) with a dynamic range spanning more than 4 orders of magnitude. The proposed approach is tested to determine OTA in red wines and shows good application potential in real samples.  相似文献   

5.
The Pseudallescheria boydii complex, comprising environmental pathogens with Scedosporium anamorphs, has recently been subdivided into five main species: Scedosporium dehoogii, S. aurantiacum, Pseudallescheria minutispora, P. apiosperma, and P. boydii, while the validity of some other taxa is being debated. Several Pseudallescheria and Scedosporium species are indicator organisms of pollution in soil and water. Scedosporium dehoogii in particular is enriched in soils contaminated by aliphatic hydrocarbons. In addition, the fungi may cause life-threatening infections involving the central nervous system in severely impaired patients. For screening purposes, rapid and economic tools for species recognition are needed. Our aim is to establish rolling circle amplification (RCA) as a screening tool for species-specific identification of Pseudallescheria and Scedosporium. With this aim, a set of padlock probes was designed on the basis of the internal transcribed spacer (ITS) region, differing by up to 13 fixed mutations. Padlock probes were unique as judged from sequence comparison by BLAST search in GenBank and in dedicated research databases at CBS (Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre). RCA was applied as an in vitro tool, tested with pure DNA amplified from cultures. The species-specific padlock probes designed in this study yielded 100% specificity. The method presented here was found to be an attractive alternative to identification by restriction fragment length polymorphism (RFLP) or sequencing. The rapidity (<1 day), specificity, and low costs make RCA a promising screening tool for environmentally and clinically relevant fungi.  相似文献   

6.
Lepeophtheirus salmonis and Caligus elongatus are important parasites of wild and cultured salmonids in the Northern Hemisphere. These species, generically referred to as sea lice, are estimated to cost the Scottish aquaculture industry in excess of pound 25 million per annum. There is great interest in countries such as Ireland, Scotland, Norway and Canada to sample sea lice larvae in their natural environment in order to understand lice larvae distribution and improve parasite control. Microscopy is currently relied on for use in the routine identification of sea lice larvae in plankton samples. This method is, however, limited by its time-consuming nature and requirement for highly skilled personnel. The development of alternative methods for the detection of sea lice larvae which might be used to complement and support microscopic examinations of environmental samples is thus desirable. In this study, a genetic method utilising a real-time PCR Taqman-MGB probe-based assay targeting the mitochondrial cytochrome oxidase I (mtCOI) gene was developed, which allowed species-specific detection of L. salmonis and C. elongatus larvae from unsorted natural and spiked plankton samples. Real-time PCR is a rapid, sensitive, highly specific and potentially quantitative technique. This study demonstrated its suitability for the routine identification of L. salmonis and C. elongatus in mixed plankton samples. The real-time PCR assay developed has considerable potential for use in complementing, supporting and reducing reliance on time-consuming conventional microscopic examination for the specific identification of sea lice larvae in plankton samples.  相似文献   

7.
Accurate identification of mycetoma causative agent is a priority for treatment. However, current identification tools are far from being satisfactory for both reliable diagnosis and epidemiological investigations. A rapid, simple, and highly efficient molecular based method for identification of agents of black grain eumycetoma is introduced, aiming to improve diagnostic in endemic areas. Rolling Circle Amplification (RCA) uses species-specific padlock probes and isothermal DNA amplification. The tests were based on ITS sequences and developed for Falciformispora senegalensis, F. tompkinsii, Madurella fahalii, M. mycetomatis, M. pseudomycetomatis, M. tropicana, Medicopsis romeroi, and Trematosphaeria grisea. With the isothermal RCA assay, 62 isolates were successfully identified with 100% specificity and no cross reactivity or false results. The main advantage of this technique is the low-cost, high specificity, and simplicity. In addition, it is highly reproducible and can be performed within a single day.  相似文献   

8.
目的 感染冠状病毒的动物向环境排毒主要是通过粪便,建立直接从粪便样品对动物冠状病毒进行检测的分子技术具有重要的公共卫生学意义。方法 通过计算机模拟和实验方法对已报道的2对针对冠状病毒pol基因的通用引物的通用性进行了验证。不经传统的病毒分离.直接从环境样品中提取病毒RNA,通过一步法RT-PCR进行检测,并通过分子杂交和Nested PCR扩增结合TaqMan探针实时荧光检测的PCR技术.提高对冠状病毒检测的灵敏度和准确度,并对猪、禽冠状病毒感染的临床样品进行分析检测。结果 2对引物可以覆盖所有已知的冠状病毒,包括SARS,RT-PCR产物通过测序可以确定冠状病毒种类;实时荧光定量NestedPCR有很高的灵敏度,可以灵敏地检出所有供试的阳性样品,而荧光增量实时监测可以排除凝胶电泳检查的假阳性。结论 该研究为从环境中普查和鉴定冠状病毒提供了可靠的技术方法。  相似文献   

9.
The members of the genus Deinococcus are extensively studied because of their exemplary radiation resistance. Both ionizing and non-ionizing rays are routinely employed to select upon the radiation resistant deinococcal population and isolate them from the majority of radiation sensitive population. There are no studies on the development of molecular tools for the rapid detection and identification of deinococci from a mixed population without causing the bias of radiation enrichment. Here we present a Deinococcus specific two-step hemi-nested PCR for the rapid detection of deinococci from environmental samples. The method is sensitive and specific to detect deinococci without radiation exposure of the sample. The new protocol was successfully employed to detect deinococci from several soil samples from different geographical regions of India. The PCR method could be adapted to a three-step protocol to study the diversity of the environmental deinococcal population by denaturing gradient gel electrophoresis (DGGE). Sequence analysis of the DGGE bands revealed that the samples harbor diverse populations of deinococci, many of which were not recovered by culturing and may represent novel clades. We demonstrate that the genus specific primers are also suitable for the rapid identification of the bacterial isolates that are obtained from a typical radiation enrichment isolation technique. Therefore the primers and the protocols described in this study can be used to study deinococcal diversity from environmental samples and can be employed for the rapid detection of deinococci in samples or identifying pure culture isolates as Deinococcus species.  相似文献   

10.
A major challenge in microbial diagnostics is the parallel detection and identification of low-bundance pathogens within a complex microbial community. In addition, a high specificity providing robust, reliable identification at least at the species level is required. A microbial diagnostic microarray approach, using single nucleotide extension labeling with gyrB as the marker gene, was developed. We present a novel concept applying competitive oligonucleotide probes to improve the specificity of the assay. Our approach enabled the sensitive and specific detection of a broad range of pathogenic bacteria. The approach was tested with a set of 35 oligonucleotide probes targeting Escherichia coli, Shigella spp., Salmonella spp., Aeromonas hydrophila, Vibrio cholerae, Mycobacterium avium, Mycobacterium tuberculosis, Helicobacter pylori, Proteus mirabilis, Yersinia enterocolitica, and Campylobacter jejuni. The introduction of competitive oligonucleotides in the labeling reaction successfully suppressed cross-reaction by closely related sequences, significantly improving the performance of the assay. Environmental applicability was tested with environmental and veterinary samples harboring complex microbial communities. Detection sensitivity in the range of 0.1% has been demonstrated, far below the 5% detection limit of traditional microbial diagnostic microarrays.  相似文献   

11.
The sandwich microarray immunoassay (SMI) is a powerful technique for the analysis and characterization of environmental samples, from the identification of microorganisms to specific bioanalytes. As the number of antibodies increases, however, unspecific binding and cross-reactivity can become a problem. To cope with such difficulties, we present here the concept of antibody graph associated to a sandwich antibody microarray. Antibody graphs give valuable information about the antibody cross-reactivity network and all the players involved in the sandwich format: capturing and tracer antibodies, the antigenic sample and the degree of cross-reactivity between antibodies. Making use of the information contained in the antibody graph, we have developed a deconvolution method that disentangles the antibody cross-reactivity events and gives qualitative information about the composition of the experimental sample under study. We have validated the method by using a 66 antibody-containing microarray to describe known antigenic mixtures as well as natural environmental samples characterized by 16S-RNA gene phylogenetic analysis. The application of our antibody graph and deconvolution method allowed us to discriminate between true specific antigen-antibody reactions and spurious signals on a microarray designed for environmental monitoring.  相似文献   

12.
We have developed a method to localize DNA double strand breaks (DSBs) insitu in cultured mammalian cells. Adenoviruses encoding Saccharomyces cerevisiae HOendonuclease and its cleavage site were used to induce site-specific DSBs. Rolling circleamplification (RCA), a sensitive method that allows the detection of single molecularevent by rapid isothermal amplification, was used to localize the broken ends in situ.Punctate RCA signals were only seen in the cells that had been infected with bothadenoviruses encoding HO endonuclease and HO cleavage site, but not in the cells mockinfectedor infected with the site or endonuclease virus only. With use of a chemicalcrosslinker, in situ RCA and immunofluorescence (IF) can be performed simultaneouslyon the same sample. This methodology provides a novel approach for investigation ofDNA recombination, DNA repair, and checkpoint controls in mammalian cells.  相似文献   

13.
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. It has been proposed that the polymorphism encoding Y402H (T1277C) in the complement factor H gene (CFH) is one of the main determinants of disease. We genotyped the polymorphism at a number of loci in the region encompassing the Regulators of Complement Activation (RCA) on chromosome 1, including T1277C SNP, in 187 patients and 146 controls. Haplotypes have been classified as protective (P) or susceptible (S) with respect to AMD. This included the identification of an S haplotype with a T at 1277. The results show that no single locus should be assumed to be directly responsible for AMD, but rather argue for the existence of RCA haplotypes, which can be assigned meaningful predictive values for AMD. We conclude that the critical sequences are within a region 450 kb centromeric to 128 kb telomeric of CFH.  相似文献   

14.
The ability to conveniently and rapidly profile a diverse set of proteins has valuable applications. In a step toward further enabling such a capability, we developed the use of rolling-circle amplification (RCA) to measure the relative levels of proteins from two serum samples, labeled with biotin and digoxigenin, respectively, that have been captured on antibody microarrays. Two-color RCA produced fluorescence up to 30-fold higher than direct-labeling and indirect-detection methods using antibody microarrays prepared on both polyacrylamide-based hydrogels and nitrocellulose. Replicate RCA measurements of multiple proteins from sets of 24 serum samples were highly reproducible and accurate. In addition, RCA enabled reproducible measurements of distinct expression profiles from lower-abundance proteins that were not measurable using the other detection methods. Two-color RCA on antibody microarrays should allow the convenient acquisition of expression profiles from a great diversity of proteins for a variety of applications.  相似文献   

15.
Three primers from 16S rRNA were successfully assayed simultaneously in one reaction for sensitive detection of Ralstonia solanacearum in watercourses. The protocol is a modification of the Co-operational polymerase chain reaction (Co-PCR), which allows the simultaneous and co-operational action of the primers. It specifically amplified R. solanacearum strains belonging to biovars 1, 2 and 4. No products were obtained from any of the 162 unidentified isolates from river water. The sensitivity of the assay was <1 cfu/ml as determined by analysis of heat-treated water samples spiked with R. solanacearum, also containing indigenous microbiota up to 10(5) cfu/ml. The developed Co-PCR assay was more sensitive than other standard PCR assays in the analysis of 51 Spanish environmental water samples. Namely 31.3% of the samples were positive using the newly developed assay, whereas 13.7% or less positive samples were found with the other protocols. The Co-PCR improves the detection sensitivity of R. solanacearum and provides an important tool for its routine detection from environmental water samples and for epidemiological studies.  相似文献   

16.
Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria.  相似文献   

17.
Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67 bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.  相似文献   

18.
An investigational red cell agglutination (RCA) test was evaluated for sensitivity in detecting and titering hepatitis B antigen (HB Ag) in comparison with two counterelectrophoresis (CEP) systems and a solid-phase radioimmunoassay (RIA). The RCA procedure was found to be significantly more sensitive than the CEP methods and compares favorably in sensitivity with the solid-phase RIA, detecting even lower concentrations of the HB Ag. Since the RCA test can be completed in 2 to 3 h and requires relatively inexpensive equipment, it offers a highly sensitive and rapid procedure suitable for use in blood banks to screen donors or detect low levels of antigen in serum of patients.  相似文献   

19.
Postma JA  Lynch JP 《Plant physiology》2011,156(3):1190-1201
Root cortical aerenchyma (RCA) is induced by hypoxia, drought, and several nutrient deficiencies. Previous research showed that RCA formation reduces the respiration and nutrient content of root tissue. We used SimRoot, a functional-structural model, to provide quantitative support for the hypothesis that RCA formation is a useful adaptation to suboptimal availability of phosphorus, nitrogen, and potassium by reducing the metabolic costs of soil exploration in maize (Zea mays). RCA increased the growth of simulated 40-d-old maize plants up to 55%, 54%, or 72% on low nitrogen, phosphorus, or potassium soil, respectively, and reduced critical fertility levels by 13%, 12%, or 7%, respectively. The greater utility of RCA on low-potassium soils is associated with the fact that root growth in potassium-deficient plants was more carbon limited than in phosphorus- and nitrogen-deficient plants. In contrast to potassium-deficient plants, phosphorus- and nitrogen-deficient plants allocate more carbon to the root system as the deficiency develops. The utility of RCA also depended on other root phenes and environmental factors. On low-phosphorus soils (7.5 μM), the utility of RCA was 2.9 times greater in plants with increased lateral branching density than in plants with normal branching. On low-nitrate soils, the utility of RCA formation was 56% greater in coarser soils with high nitrate leaching. Large genetic variation in RCA formation and the utility of RCA for a range of stresses position RCA as an interesting crop-breeding target for enhanced soil resource acquisition.  相似文献   

20.
Sensitive detection assays are a prerequisite for the analysis of small amounts of samples derived from biological material. There is a great demand for highly sensitive and robust detection techniques to analyze biomolecules. The combination of catalytic active DNA (DNAzyme) with a peroxidase activity with rolling circle amplification (RCA) is a promising alternative to common detection systems. The rolling circle amplification leads to a product with tandemly linked copies of DNAzymes. The continuous signal generation of the amplified DNAzymes results in an increased sensitivity. The combination of two amplification reactions, namely RCA and DNAzymes, results in increased signal intensity by a factor of 10(6). With this approach the labeling of samples can be avoided. The advantage of the introduced assay is the usage of nucleic acids as biosensors for the detection of biomolecules. Coupling of the analyte molecule to the detection molecules allows the direct detection of the analyte molecule. The described label-free hotpot assay has a broad potential field of applications. The hotpot assay can be adapted to detect and analyze RNA, DNA and proteins down to femtomolar concentrations in a miniaturized platform with a total reaction solution of 50 nl. The applicability of the assay for diagnostics and research will be shown with a focus on high throughput systems using a nano-well platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号