首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During vertebrate embryogenesis different classes of motor axons exit the spinal cord and migrate on common axonal paths into the periphery. Surprisingly little is known about how this initial migration of spinal motor axons is controlled by external cues. Here, we show that the diwanka gene is required for growth cone migration of three identified subtypes of zebrafish primary motoneurons. In diwanka mutant embryos, motor growth cone migration within the spinal cord is unaffected but it is strongly impaired as motor axons enter their common path to the somites. Chimera analysis shows that diwanka gene activity is required in a small set of myotomal cells, called adaxial cells. We identified a subset of the adaxial cells to be sufficient to rescue the diwanka motor axon defect. Moreover, we show that this subset of adaxial cells delineates the common axonal path prior to axonogenesis, and we show that interactions between these adaxial cells and motor growth cones are likely to be transient. The studies demonstrate that a distinct population of myotomal cells plays a pivotal role in the early migration of zebrafish motor axons and identify the diwanka gene as a somite-derived cue required to establish an axonal path from the spinal cord to the somites.  相似文献   

2.
J S Eisen  S H Pike  B Debu 《Neuron》1989,2(1):1097-1104
Developing motoneurons in zebrafish embryos follow a stereotyped sequence of axonal outgrowth and accurately project their axons to cell-specific target muscles. During axonal pathfinding, an identified motoneuron pioneers the peripheral motor pathway. Growth cones of later motoneurons interact with the pioneer via contact, coupling, and axonal fasciculation. In spite of these interactions, ablation of the pioneer motoneuron does not affect the ability of other identified motoneurons to select the pathways that lead to appropriate target muscles. We conclude that interactions between these cells during pathfinding are not required for accurate pathway selection.  相似文献   

3.
In vertebrate embryos, spinal motor neurons project through segmentally reiterated nerves into the somites. Here, we report that zebrafish secondary motor neurons, which are similar to motor neurons in birds and mammals, depend on myotomal cues to navigate into the periphery. We show that the absence of myotomal adaxial cells in you-too/gli2 embryos severely impairs secondary motor axonal pathfinding, including their ability to project into the somites. Moreover, in diwanka mutant embryos, in which adaxial cells are present but fail to produce cues essential for primary motor growth cones to pioneer into the somites, secondary motor axons display similar pathfinding defects. The similarities between the axonal defects in you-too/gli2 and diwanka mutant embryos strongly suggest that pathfinding of secondary motor axons depends on myotome-derived cues, and that the diwanka gene is a likely candidate to produce or encode such a cue. Our experiments also demonstrate that diwanka plays a central role in the migration of primary and secondary motor neurons, suggesting that both neural populations share mechanisms underlying axonal pathfinding. In summary, we provide compelling evidence that myotomal cells produce multiple signals to initiate and control the migration of spinal nerve axons into the somites.  相似文献   

4.
Motor growth cones navigate long and complex trajectories to connect with their muscle targets. Experimental studies have shown that this guidance process critically depends on extrinsic cues. In the zebrafish embryo, a subset of mesodermal cells, the adaxial cells, delineates the prospective path of pioneering motor growth cones. Genetic ablation of adaxial cells causes profound pathfinding defects, suggesting the existence of adaxial cell derived guidance factors. Intriguingly, adaxial cells are themselves migratory, and as growth cones approach they migrate away from the prospective axonal path to the lateral surface of the myotome, where they develop into slow-twitching muscle fibers. Genetic screens in embryos stained with an antibody cocktail identified mutants with specific defects in differentiation and migration of adaxial cells/slow muscle fibers, as well as mutants with specific defects in axonal pathfinding, including exit from the spinal cord and pathway selection. Together, the genes underlying these mutant phenotypes define pathways essential for nerve and muscle development and interactions between these two cell types.  相似文献   

5.
In avians and mice, trunk neural crest migration is restricted to the anterior half of each somite. Sclerotome has been shown to play an essential role in this restriction; the potential role of other somite components in specifying neural crest migration is currently unclear. By contrast, in zebrafish trunk neural crest, migration on the medial pathway is restricted to the middle of the medial surface of each somite. Sclerotome comprises only a minor part of zebrafish somites, and the pattern of neural crest migration is established before crest cells contact sclerotome cells, suggesting other somite components regulate the pattern of zebrafish neural crest migration. Here, we use mutants to investigate which components regulate the pattern of zebrafish trunk neural crest migration on the medial pathway. The pattern of trunk neural crest migration is aberrant in spadetail mutants that have very reduced somitic mesoderm, in no tail mutants injected with spadetail morpholino antisense oligonucleotides that entirely lack somitic mesoderm and in somite segmentation mutants that have normal somite components but disrupted segment borders. Fast muscle cells appear dispensable for patterning trunk neural crest migration. However, migration is abnormal in Hedgehog signaling mutants that lack slow muscle cells, providing evidence that slow muscle cells regulate the pattern of trunk neural crest migration. Consistent with this idea, surgical removal of adaxial cells, which are slow muscle precursors, results in abnormal patterning of neural crest migration; normal patterning can be restored by replacing the ablated adaxial cells with ones transplanted from wild-type embryos.  相似文献   

6.
Individually identified primary motoneurons of the zebrafish embryo pioneer cell-specific peripheral motor nerves. Later, the growth cones of secondary motoneurons extend along pathways pioneered by primary motor axons. To learn whether primary motor axons are required for pathway navigation by secondary motoneurons, we ablated primary motoneurons and examined subsequent pathfinding by the growth cones of secondary motoneurons. We found that ablation of the primary motoneuron that pioneers the ventral nerve delayed ventral nerve formation, but a normal-appearing nerve eventually formed. Therefore, the secondary motoneurons that extend axons in the ventral nerve were able to pioneer that pathway in the absence of the pathway-specific primary motoneuron. In contrast, in the absence of the primary motoneuron that normally pioneers the dorsal nerve, secondary motoneurons did not pioneer a nerve in the normal location, instead they formed dorsal nerves in an atypical position. This difference in the ability of these two groups of motoneurons to pioneer their normal pathways suggests that the guidance rules followed by their growth cones may be very different. Furthermore, the observation that the atypical dorsal nerves formed in a consistent incorrect location suggests that the growth cones of the secondary motoneurons that extend dorsally make hierarchical pathway choices.  相似文献   

7.
Hedgehog proteins mediate many of the inductive interactions that determine cell fate during embryonic development. Hedgehog signaling has been shown to regulate slow muscle fiber type development. We report here that mutations in the zebrafish slow-muscle-omitted (smu) gene disrupt many developmental processes involving Hedgehog signaling. smu(-/-) embryos have a 99% reduction in the number of slow muscle fibers and a complete loss of Engrailed-expressing muscle pioneers. In addition, mutant embryos have partial cyclopia, and defects in jaw cartilage, circulation and fin growth. The smu(-/-) phenotype is phenocopied by treatment of wild-type embryos with forskolin, which inhibits the response of cells to Hedgehog signaling by indirect activation of cAMP-dependent protein kinase (PKA). Overexpression of Sonic hedgehog (Shh) or dominant negative PKA (dnPKA) in wild-type embryos causes all somitic cells to develop into slow muscle fibers. Overexpression of Shh does not rescue slow muscle fiber development in smu(-/-) embryos, whereas overexpression of dnPKA does. Cell transplantation experiments confirm that smu function is required cell-autonomously within the muscle precursors: wild-type muscle cells rescue slow muscle fiber development in smu(-/-) embryos, whereas mutant muscle cells cannot develop into slow muscle fibers in wild-type embryos. Slow muscle fiber development in smu mutant embryos is also rescued by expression of rat Smoothened. Therefore, Hedgehog signaling through Slow-muscle-omitted is necessary for slow muscle fiber type development. We propose that smu encodes a vital component in the Hedgehog response pathway.  相似文献   

8.
In zebrafish embryos, the axons of the posterior trigeminal (Vp) and facial (VII) motoneurons project stereotypically to a small number of target muscles derived from the first and second branchial arches (BA1, BA2). Use of the Islet1 (Isl1)-GFP transgenic line enabled precise real-time observations of the growth cone behaviour of the Vp and VII motoneurons within BA1 and BA2. Screening for N-ethyl-N-nitrosourea-induced mutants identified seven distinct mutations affecting different steps in the axonal pathfinding of these motoneurons. The class 1 mutations caused severe defasciculation and abnormal pathfinding in both Vp and VII motor axons before they reached their target muscles in BA1. The class 2 mutations caused impaired axonal outgrowth of the Vp motoneurons at the BA1-BA2 boundary. The class 3 mutation caused impaired axonal outgrowth of the Vp motoneurons within the target muscles derived from BA1 and BA2. The class 4 mutation caused retraction of the Vp motor axons in BA1 and abnormal invasion of the VII motor axons in BA1 beyond the BA1-BA2 boundary. Time-lapse observations of the class 1 mutant, vermicelli (vmc), which has a defect in the plexin A3 (plxna3) gene, revealed that Plxna3 acts with its ligand Sema3a1 for fasciculation and correct target selection of the Vp and VII motor axons after separation from the common pathways shared with the sensory axons in BA1 and BA2, and for the proper exit and outgrowth of the axons of the primary motoneurons from the spinal cord.  相似文献   

9.
10.
11.
Fushi-tarazu factor 1a (Ftz-F1a, Ff1a, Nr5a2) is a nuclear receptor with diverse functions in many tissues. Here, we report the function of ff1a in zebrafish muscle differentiation. In situ hybridization revealed that ff1a mRNA was present in the adaxial and migrating slow muscle precursors and was down-regulated when slow muscle cells matured. This expression was under the control of hedgehog genes, expanded when hedgehog was increased and missing in mutants defective in genes in the Hedgehog pathway like you-too (yot), sonic you (syu), and u-boot (ubo). Blocking ff1a activity by injecting a deleted form of ff1a or an antisense ff1a morpholino oligo into fish embryos caused thinner and disorganized fibers of both slow and fast properties. Transient expression of ff1a in syu, ubo, and yot embryos led to more fibril bundles, even when slow myoblasts were transfated into fast properties. We showed that ff1a and prox1 complemented each other in slow myofibril assembly, but they did not affect the expression of each other. These results demonstrate that ff1a functions in both slow and fast muscle morphogenesis in response to Hedgehog signaling, and this function parallels the activity of another slow muscle gene, prox1.  相似文献   

12.
SUMMARY In the zebrafish embryo, expression of the prdm1 and patched1 genes in adaxial cells is indicative of their specification to give rise to slow twitch muscle fibers in response to Hedgehog (Hh) signaling. Subsets of these slow twitch muscle progenitors activate engrailed ( eng ) strongly in response to high-level Hh signaling, and differentiate into muscle pioneer cells, which are important for subsequent development of the horizontal myoseptum. In addition, eng is expressed more weakly in medial fast fibers in response to lower Hh levels. Somite morphology in the lamprey, an agnathan (jawless) vertebrate, differs significantly from that of teleosts. In particular, the lamprey does not have clear epaxial/hypaxial domains, lacks a horizontal myoseptum, and does not appear to possess distinct populations of fast and slow fibers in the embryonic somite. Nevertheless, Hh is expressed in the midline of the lamprey embryo, and we report here that, as in zebrafish, homologues of patched and prdm1 are expressed in adaxial regions of the lamprey somite, and an eng homologue is also expressed in the somite. However, the lamprey adaxial region does not exhibit the same distinct adaxial cell morphology as in the zebrafish. In addition, the expression of follistatin is not excluded from the adaxial region, and eng is not detected in discrete muscle pioneer-like cells. These data suggest the presence of conserved responses to Hh signaling in lamprey somites, although the full range of effects elicited by Hh in the zebrafish somite is not recapitulated.  相似文献   

13.
One of the earliest guidance decisions for spinal cord motoneurons occurs when pools of motoneurons orient their growth cones towards a common, segmental exit point. In contrast to later events, remarkably little is known about the molecular mechanisms underlying intraspinal motor axon guidance. In zebrafish sidetracked (set) mutants, motor axons exit from the spinal cord at ectopic positions. By single-cell labeling and time-lapse analysis we show that motoneurons with cell bodies adjacent to the segmental exit point properly exit from the spinal cord, whereas those farther away display pathfinding errors. Misguided growth cones either orient away from the endogenous exit point, extend towards the endogenous exit point but bypass it or exit at non-segmental, ectopic locations. Furthermore, we show that sidetracked acts cell autonomously in motoneurons. Positional cloning reveals that sidetracked encodes Plexin A3, a semaphorin guidance receptor for repulsive guidance. Finally, we show that sidetracked (plexin A3) plays an additional role in motor axonal morphogenesis. Together, our data genetically identify the first guidance receptor required for intraspinal migration of pioneering motor axons and implicate the well-described semaphorin/plexin signaling pathway in this poorly understood process. We propose that axonal repulsion via Plexin A3 is a major driving force for intraspinal motor growth cone guidance.  相似文献   

14.
In zebrafish, Hedgehog-induced Engrailed expression defines a muscle fibre population that includes both slow and fast fibre types and exhibits an organisational role on myotome and surrounding tissues, such as motoneurons and lateral line. This Engrailed-positive population is restricted in the myotome to a central domain. To understand how this population is established, we have analysed the phenotype of the sly/lamc1 mutation in the Laminin γ1 chain that was shown to specifically affect Engrailed expression in pioneers. We find that the sly mutation affects Engrailed expression in the entire central domain and that Hedgehog signalling does not mediate this effect. We show that Bmp-responding cells are excluded from the central domain and that this pattern is modulated by laminins, but not by Hedgehog signalling. Knockdown of Bmp signalling rescues Engrailed expression in the sly mutant and ectopically activates Engrailed expression in slow and fast lineages in wild-type embryos. Last, extracellular matrix-associated heparan sulfate proteoglycans are absent in sly and their enzymatic removal mimics the sly phenotype. Our results therefore show that laminins, via heparan sulfate proteoglycans, are instrumental in patterning Bmp responsiveness and that Bmp signalling restricts Engrailed expression to the central domain. This study underlines the importance of extracellular cues for the precise spatial modulation of cell response to morphogens.  相似文献   

15.
The neural and vascular systems share common guidance cues that have direct and independent signaling effects on nerves and endothelial cells. Here, we show that zebrafish Netrin 1a directs Dcc-mediated axon guidance of motoneurons and that this neural guidance function is essential for lymphangiogenesis. Specifically, Netrin 1a secreted by the muscle pioneers at the horizontal myoseptum (HMS) is required for the sprouting of dcc-expressing rostral primary motoneuron (RoP) axons and neighboring axons along the HMS, adjacent to the future trajectory of the parachordal chain (PAC). These axons are required for the formation of the PAC and, subsequently, the thoracic duct. The failure to form the PAC in netrin 1a or dcc morphants is phenocopied by laser ablation of motoneurons and is rescued both by cellular transplants and overexpression of dcc mRNA. These results provide a definitive example of the requirement of axons in endothelial guidance leading to the parallel patterning of nerves and vessels in vivo.  相似文献   

16.
The role of specific axonal tracts for the guidance of growth cones was investigated by examining axonal outgrowth within the abnormal brain tracts of zebrafish cyclops mutants. Normally, the earliest differentiating neurons in the zebrafish brain establish a simple scaffold of axonal tracts. Later-developing axons follow cell-specific pathways within this axonal scaffold. In Cyclops embryos, this scaffold is perturbed due to the deletion of some ventromedial neurons that establish parts of the axonal scaffold and the development of an abnormal crease in the brain. In these mutant embryos, the growth cones projected by the neurons of the nucleus of the posterior commissure (nur PC) are deprived of the two tracts of axons that they sequentially follow to first extend ventrally, then posteriorly. These growth cones respond to the abnormal scaffold in several interesting ways. First, nuc PC growth cones initially always extend ventrally as in wild-type embryos. This suggests that for the first portion of their pathway the axons they normally follow are not required for proper navigation. Second, approximately half of the nuc PC growth cones follow aberrant longitudinal pathways after the first portion of their pathway. This suggests that for the longitudinal portion of the pathway, specific growth cone/axon interactions are important for guiding growth cones. Third, although approximately half of the nuc PC growth cones follow aberrant longitudinal pathways, the rest follow normal pathways despite the absence of the axons that they normally follow. This suggests that cues independent of these axons may be capable of guiding nuc PC growth cones as well. These results suggest that different guidance cues or combinations of cues guide specific growth cones along different portions of their pathway. 1994 John Wiley & Sons, Inc.  相似文献   

17.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

18.
The innervation of the myotomal muscles in the trunk region of Xenopus embryos has been examined to see how the path taken by motoneurons within the spinal cord is formed. The growth of motor axons has been studied by retrograde labeling with horseradish peroxidase and the growth of the spinal cord and myotomes has been studied by labeling with fluorescent beads. Results show that motoneurons initially innervate the nearest muscles. Then through a process of differential growth whereby the muscles elongate more than the spinal cord, the axonal terminals in the muscles become displaced caudally relative to their cell bodies. In this manner the central pathway taken by the motor axons develops after initial innervation of their peripheral targets.  相似文献   

19.
As an adipokine, coiled-coil domain-containing 3 (CCDC3) plays multiple physiological roles in fatty liver, lipid metabolism, and abdominal obesity. Grass carp was selected as the experimental animal in this study to investigate the roles of Ccdc3 in teleosts. Results showed that the open reading frame (ORF) of cloned ccdc3 was 831 bp and encoded 276 amino acids. Three N-glycosylation sites and a predicted coiled-coil domain motif were located in the identified Ccdc3. Moreover, a nuclear localization signal (NLS) was contained in the coiled-coil domain motif of the identified Ccdc3. The results on tissue distribution revealed that ccdc3 was highly detected in grass carp fat and brain tissue. In the oral glucose tolerance test (OGTT), the expression of ccdc3 increased remarkably in the brain, hypothalamus, and visceral fat in the glucose treatment group. In the fasting and refeeding experiment, the ccdc3 expression levels were remarkably reduced in the brain, hypothalamus, and visceral fat after 14 days of fasting. In the refeeding group, the ccdc3 expression levels were considerably elevated compared with those in the fasting group. In the induced overfeeding experiment, the ccdc3 expression increased remarkably in the hepatopancreas, brain, and visceral fat tissues. The ccdc3 expression in the primary hepatocytes was remarkably increased with glucose, oleic acid, and insulin treatment. However, ccdc3 expression was markedly decreased with glucagon treatment. In conclusion, these results indicate that Ccdc3 is involved in regulating glucose and lipid metabolism of teleosts.  相似文献   

20.
Many lines of evidence suggest that glial cells function as guide post cells for axonal pathfinding. However, due to the difficulty in completely eliminating glial cells during development, their functions in axonal pathfinding have not been critically evaluated. In Drosophila gcm mutant embryos, glial cells were genetically eliminated providing us with a unique opportunity to investigate glial functions in nervous system formation. We showed that even in the absence of glial cells the initial axonal extension of pioneer neurons was essentially normal. However, at later stages, axon bundle formation and pathfinding were disturbed in the absence of glial cells, and abnormal migration of glial cells led to misrouting of axons. This indicates that glial cells are required for correct pathfinding at later stages. We propose that glial cells function in a stage-specific manner; they are not required for the initial extension of pioneers but essential for the subsequent extension of pioneers and followers as well as axon bundle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号