首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K(+) for 5 min, was significantly reduced ( approximately 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K(+) was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca(2+)-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca(2+), plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells.  相似文献   

2.
3.
4.
5.
IntroductionThis work was undertaken to delineate intracellular signaling pathways for the PDE4 inhibitor apremilast and to examine interactions between apremilast, methotrexate and adenosine A2A receptors (A2AR).MethodsAfter apremilast and LPS incubation, intracellular cAMP, TNF-α, IL-10, IL-6 and IL-1α were measured in the Raw264.7 monocytic murine cell line. PKA, Epac1/2 (signaling intermediates for cAMP) and A2AR knockdowns were performed by shRNA transfection and interactions with A2AR and A2BR, as well as with methotrexate were tested in vitro and in the murine air pouch model. Statistical differences were determined using one or two-way ANOVA or Student’s t test. The alpha nominal level was set at 0.05 in all cases. A P value of < 0.05 was considered significant.ResultsIn vitro, apremilast increased intracellular cAMP and inhibited TNF-α release (IC50=104nM) and the specific A2AR-agonist CGS21680 (1μM) increased apremilast potency (IC50=25nM). In this cell line, apremilast increased IL-10 production. PKA, Epac1 and Epac2 knockdowns prevented TNF-α inhibition and IL-10 stimulation by apremilast. In the murine air pouch model, both apremilast and MTX significantly inhibited leukocyte infiltration, while apremilast, but not MTX, significantly inhibited TNF-α release. The addition of MTX (1 mg/kg) to apremilast (5 mg/kg) yielded no more inhibition of leukocyte infiltration or TNF-α release than with apremilast alone.ConclusionsThe immunoregulatory effects of apremilast appear to be mediated by cAMP through the downstream effectors PKA, Epac1, and Epac2. A2AR agonism potentiated TNF-α inhibition by apremilast, consistent with the cAMP-elevating effects of that receptor. Because the A2AR is also involved in the anti-inflammatory effects of MTX, the mechanism of action of both drugs involves cAMP-dependent pathways and is therefore partially overlapping in nature.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0771-6) contains supplementary material, which is available to authorized users.  相似文献   

6.
Russian Journal of Genetics - To explore for the first time an effect of gene × environment (G × E) interactions on the clinical characteristics of schizophrenia, we studied the ZNF804A...  相似文献   

7.
8.
9.
Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.  相似文献   

10.
11.
12.
Cyclic AMP is hydrolyzed by members of at least eight classes of cyclic nucleotide phosphodiesterases (PDEs). Although it has been reported that cyclic AMP PDE activity in mammalian tissues can be inhibited by benzodiazepines, it has not been conclusively demonstrated that members of the class of cyclic AMP-specific, rolipram-inhibitable PDEs (PDE4s) are targets for these drugs. Moreover, no PDE4s expressed in mice have been characterized. To address these issues, we isolated two cDNAs representing homologues of PDE4A1 and PDE4B3 from a mouse brain library. After transient transfection in human embryonic kidney (HEK) 293 cells, the mouse PDEs hydrolyzed cyclic AMP with a low K(m) and were inhibited by rolipram; both are properties typical of other mammalian PDE4 enzymes. In addition, we found that diazepam inhibited cyclic AMP hydrolysis by the mouse PDE4 subtypes. Interestingly, PDE4B was significantly more sensitive to inhibition by both rolipram and diazepam than the PDE4A subtype. This is the first demonstration that recombinantly expressed PDE4s are inhibited by diazepam, and should facilitate future studies with mouse models of depression and anxiety.  相似文献   

13.
14.
《Molecular cell》2021,81(19):4041-4058.e15
  1. Download : Download high-res image (97KB)
  2. Download : Download full-size image
  相似文献   

15.
CACNA1C‐rs1006737 and ZNF804A‐rs1344706 polymorphisms are among the most robustly associated with schizophrenia (SCZ) and bipolar disorder (BD), and recently with brain phenotypes. As these patients show abnormal verbal fluency (VF) and related brain activation, we asked whether the latter was affected by these polymorphisms (alone and in interaction)—to better understand how they might induce risk. We recently reported effects on functional VF‐related (for ZNF804A‐rs1344706) and structural (for both) connectivity. We genotyped and fMRI‐scanned 54 SCZ, 40 BD and 80 controls during VF. With SPM, we assessed the main effect of CACNA1C‐rs1006737, and its interaction with ZNF804A‐rs1344706, and their interaction with diagnosis, on regional brain activation and functional connectivity (psychophysiological interactions—PPI). Using public data, we reported effects of CACNA1C‐rs1006737 and diagnosis on brain expression. The CACNA1C‐rs1006737 risk allele was associated with increased activation, particularly in the bilateral prefronto‐temporal cortex and thalamus; decreased PPI, especially in the left temporal cortex; and gene expression in white matter and the cerebellum. We also found unprecedented evidence for epistasis (interaction between genetic polymorphisms) in the caudate nucleus, thalamus, and cingulate and temporal cortical activation; and CACNA1C up‐regulation in SCZ and BD parietal cortices. Some effects were dependent on BD/SCZ diagnosis. All imaging results were whole‐brain, voxel‐wise, and familywise‐error corrected. Our results support evidence implicating CACNA1C and ZNF804A in BD and SCZ, adding novel imaging evidence in clinical populations, and of epistasis—which needs further replication. Further scrutiny of the inherent neurobiological mechanisms may disclose their potential as putative drug targets.  相似文献   

16.
17.
18.
19.
Many studies implicate altered cyclic nucleotide signaling in the pathophysiology of major depressive disorder (MDD), bipolar disorder (BPD), and schizophrenia (SCZ). As such, we explored how phosphodiesterases 2A (PDE2A) and 10A (PDE10A)—enzymes that break down cyclic nucleotides—may be altered in brains of these patients. Using autoradiographic in situ hybridization on postmortem brain tissue from the Stanley Foundation Neuropathology Consortium, we measured expression of PDE2 and PDE10 mRNA in multiple brain regions implicated in psychiatric pathophysiology, including cingulate cortex, orbital frontal cortex (OFC), superior temporal gyrus, hippocampus, parahippocampal cortex, amygdala, and the striatum. We also assessed how PDE2A and PDE10A expression changes in these brain regions across development using the Allen Institute for Brain Science Brainspan database. Compared to controls, patients with SCZ, MDD and BPD all showed reduced PDE2A mRNA in the amygdala. In contrast, PDE2A expression changes in frontal cortical regions were only significant in patients with SCZ, while those in caudal entorhinal cortex, hippocampus, and the striatum were most pronounced in patients with BPD. PDE10A expression was only detected in striatum and did not differ by disease group; however, all groups showed significantly less PDE10A mRNA expression in ventral versus dorsal striatum. Across development, PDE2A mRNA increased in these brain regions; whereas, PDE10A mRNA expression decreased in all regions except striatum. Thus, PDE2A mRNA expression changes in both a disorder- and brain region-specific manner, potentially implicating PDE2A as a novel diagnostic and/or patient-selection biomarker or therapeutic target.  相似文献   

20.
ERK pathway positively regulates the expression of Sprouty genes   总被引:6,自引:0,他引:6  
Sprouty was originally identified as an inhibitor of Drosophila development-associated receptor tyrosine kinase (RTK) signaling. Although RTK signaling has been shown to induce Sprouty gene expression, the precise induction pathway downstream of RTK remains unclear. As RTK signaling pathway includes activation of extracellular signal-regulated kinases (ERKs), we have examined a correlation between activation of ERKs and induction of Sprouty gene expression. All reagents which induce the activation of ERKs induce Sprouty gene expression; these agents include not only growth factors which bind to RTK but also phorbol 12-myristate-13-acetate and active Raf-1 kinase. Furthermore, the Sprouty gene expression induced by all those agents is totally suppressed when the cells are pretreated with specific inhibitors of ERK kinase (MEK). Human tumor cells which exhibit constitutive activation of ERKs show elevated expression of Sprouty genes, which is abolished by treatment of these cells with MEK inhibitors. All these findings clearly indicate that Sprouty gene expression is positively regulated by the ERK pathway downstream of RTK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号