首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The two-component flavin-dependent monooxygenases belong to an emerging class of enzymes involved in oxidation reactions in a number of metabolic and biosynthetic pathways in microorganisms. One component is a NAD(P)H:flavin oxidoreductase, which provides a reduced flavin to the second component, the proper monooxygenase. There, the reduced flavin activates molecular oxygen for substrate oxidation. Here, we study the flavin reductase ActVB and ActVA-ORF5 gene product, both reported to be involved in the last step of biosynthesis of the natural antibiotic actinorhodin in Streptomyces coelicolor. For the first time we show that ActVA-ORF5 is a FMN-dependent monooxygenase that together with the help of the flavin reductase ActVB catalyzes the oxidation reaction. The mechanism of the transfer of reduced FMN between ActVB and ActVA-ORF5 has been investigated. Dissociation constant values for oxidized and reduced flavin (FMNox and FMNred) with regard to ActVB and ActVA-ORF5 have been determined. The data clearly demonstrate a thermodynamic transfer of FMNred from ActVB to ActVA-ORF5 without involving a particular interaction between the two protein components. In full agreement with these data, we propose a reaction mechanism in which FMNox binds to ActVB, where it is reduced, and the resulting FMNred moves to ActVA-ORF5, where it reacts with O2 to generate a flavinperoxide intermediate. A direct spectroscopic evidence for the formation of such species within ActVA-ORF5 is reported.  相似文献   

3.
Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2)   总被引:19,自引:0,他引:19  
A series of 76 mutants of Streptomyces coelicolor A3(2) specifically blocked in the synthesis of the binaphthoquinone antibiotic actinorhodin were classified into seven phenotypic classes on the basis of antibiotic activity, accumulation of pigmented precursors or shunt products of actinorhodin biosynthesis, and cosynthesis of actinorhodin in pairwise combinations of mutants. The polarity of cosynthetic reactions, and other phenotypic properties, allowed six of the mutant classes to be arranged in the most probable linear sequence of biosynthetic blocks. One member of each mutant class was mapped unambigiguously to the chromosomal linkage map in the short segment between the hisD and guaA loci, suggesting that structural genes for actinorhodin biosynthesis may form an uninterrupted cluster of chromosomal genes.  相似文献   

4.
Initiation of actinorhodin export in Streptomyces coelicolor   总被引:1,自引:0,他引:1  
Many microorganisms produce molecules having antibiotic activity and expel them into the environment, presumably enhancing their ability to compete with their neighbours. Given that these molecules are often toxic to the producer, mechanisms must exist to ensure that the assembly of the export apparatus accompanies or precedes biosynthesis. Streptomyces coelicolor produces the polyketide antibiotic actinorhodin in a multistep pathway involving enzymes encoded by genes that are clustered together. Embedded within the cluster are genes for actinorhodin export, two of which, actR and actA resemble the classic tetR and tetA repressor/efflux pump-encoding gene pairs that confer resistance to tetracycline. Like TetR, which represses tetA, ActR is a repressor of actA. We have identified several molecules that can relieve repression by ActR. Importantly (S)-DNPA (an intermediate in the actinorhodin biosynthetic pathway) and kalafungin (a molecule related to the intermediate dihydrokalafungin), are especially potent ActR ligands. This suggests that along with the mature antibiotic(s), intermediates in the biosynthetic pathway might activate expression of the export genes thereby coupling export to biosynthesis. We suggest that this could be a common feature in the production of many bioactive natural products.  相似文献   

5.
6.
7.
S Horinouchi  O Hara    T Beppu 《Journal of bacteriology》1983,155(3):1238-1248
A-factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone), an autoregulating factor originally found in Streptomyces griseus, is involved in streptomycin biosynthesis and cell differentiation in this organism. A-factor production is widely distributed among actinomycetes, including Streptomyces coelicolor A3(2) and Streptomyces lividans. A chromosomal pleiotropic regulatory gene of S. coelicolor A3(2) controlling biosynthesis of A-factor and red pigments was cloned with a spontaneous A-factor-deficient strain of S. lividans HH21 and plasmid pIJ41 as a host-vector system. The restriction endonuclease KpnI-digested chromosomal fragments were ligated into the plasmid vector and introduced by transformation into the protoplasts of strain HH21. Three red transformants thus selected were found to produce A-factor and to carry a plasmid with the same molecular weight, and a 6.4-megadalton fragment was inserted in the KpnI site of pIJ41. By restriction endonuclease mapping and subcloning, a restriction fragment (1.2 megadaltons, approximately 2,000 base pairs) bearing the gene which causes concomitant production of A-factor and red pigments was determined. The red pigments were identified by thin-layer chromatography and spectroscopy to be actinorhodin and prodigiosin, both of which are the antibiotics produced by S. coelicolor A3(2). The cloned fragment was introduced into the A-factor-negative mutants (afs) of S. coelicolor A3(2) by using pIJ702 as the vector, where it complemented one of these mutations, afsB, characterized by simultaneous loss of A-factor and red pigment production. We conclude that the cloned gene pleiotropically and positively controls the biosynthesis of A-factor, actinorhodin, and prodigiosin.  相似文献   

8.
9.
10.
Phosphomannomutase (ManB), whose main function is the conversion of mannose-6-phosphate to mannose-1-phosphate, is involved in biosynthesis of GDP-mannose for numerous processes such as synthesis of structural carbohydrates, production of alginates and ascorbic acid, and post-translational modification of proteins in prokaryotes and eukaryotes. ManB isolated from Streptomyces coelicolor was shown to have both phosphomannomutase and phosphoglucomutase activities. Deletion of manB in S. coelicolor caused a dramatic increase in actinorhodin (ACT) production in the low-glucose Difco nutrient (DN) medium, whereas the wild-type strain did not produce ACT on this medium. Experiments involving complementation of the manB deletion showed that increased ACT production in DN media was due to blockage of phosphomannomutase activity rather than phosphoglucomutase activity. This result therefore provides useful information for the design of strategies that enhance antibiotic production through the control of carbon flux.  相似文献   

11.
12.
Neutral lipid accumulation during early growth phase of Streptomyces coelicolor A3(2) was essential for the actinorhodin production during later growth. The activities of lipase and isocitrate dehydrogenase were increasing and decreasing, respectively, suggesting that the degradation products of neutral lipids serve actinorhodin biosynthesis as precursors.  相似文献   

13.
14.
A mutation in actVI-ORF1, which controls C-3 reduction in actinorhodin biosynthesis by Streptomyces coelicolor, was complemented by gra-ORF5 and -ORF6 from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22. It is hypothesized that, while gra-ORF5 alone is a ketoreductase for C-9, gra-ORF6 gives the enzyme regiospecificity also for C-3.  相似文献   

15.
The objectives of the current studies were to determine the roles of key enzymes in central carbon metabolism in the context of increased production of antibiotics in Streptomyces coelicolor. Genes for glucose-6-phosphate dehydrogenase and phosphoglucomutase (Pgm) were deleted and those for the acetyl coenzyme A carboxylase (ACCase) were overexpressed. Under the conditions tested, glucose-6-phosphate dehydrogenase encoded by zwf2 plays a more important role than that encoded by zwf1 in determining the carbon flux to actinorhodin (Act), while the function of Pgm encoded by SCO7443 is not clearly understood. The pgm-deleted mutant unexpectedly produced abundant glycogen but was impaired in Act production, the exact reverse of what had been anticipated. Overexpression of the ACCase resulted in more rapid utilization of glucose and sharply increased the efficiency of its conversion to Act. From the current experiments, it is concluded that carbon storage metabolism plays a significant role in precursor supply for Act production and that manipulation of central carbohydrate metabolism can lead to an increased production of Act in S. coelicolor.  相似文献   

16.
17.
The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C(14) to C(18)) as acyl donors. The K(m) and V(max) values of this enzyme for myristoyl-CoA were 45 muM and 822 nmol mg(-1) min(-1), respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.  相似文献   

18.
The SCO5461 gene of Streptomyces coelicolor A3(2) codes for an ADP-ribosyltransferase enzyme that is predicted to be a transmembrane protein with an extracellular catalytic domain. PCR-targeted disruption of the gene resulted in a mutant that differentiated normally on complex SFM medium; however, morphological differentiation in minimal medium was significantly delayed and this phenotype was even more pronounced on osmotically enhanced minimal medium. The mutant did not sporulate when it was grown on R5 medium, however the normal morphological differentiation was restored when the strain was cultivated beside the wild-type S. coelicolor M145 strain. Comparison of the pattern of ADP-ribosylated proteins showed a difference between the mutant and the wild type, fewer modified proteins were present in the cellular crude extract of the mutant strain. These results support our previous suggestions that protein ADP-ribosylation is involved in the regulation of differentiation and antibiotic production and secretion in Streptomyces.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号