共查询到20条相似文献,搜索用时 0 毫秒
1.
The asymmetry of environmental stimuli and the execution of developmental programs at the organism level require a corresponding polarity at the cellular level, in both unicellular and multicellular organisms. In plants, cell polarity is important in major developmental processes such as cell division, cell enlargement, cell morphogenesis, embryogenesis, axis formation, organ development, and defense. One of the most important factors controlling cell polarity is the asymmetric distribution of polarity determinants. In particular, phosphorylation is implicated in the polar distribution of the determinant protein factors, a mechanism conserved in both prokaryotes and eukaryotes. In plants, formation of local gradients of auxin, the morphogenic hormone, is critical for plant developmental processes exhibiting polarity. The auxin efflux carriers PIN-FORMEDs (PINs) localize asymmetrically in the plasma membrane and cause the formation of local auxin gradients throughout the plant. The asymmetry of PIN distribution in the plasma membrane is determined by phosphorylationmediated polar trafficking of PIN proteins. This review discusses recent studies on the role of phosphorylation in polar PIN trafficking. 相似文献
2.
The subcellular polarity of PIN-FORMEDs (PINs) is critical for directional cell-to-cell transport of auxin. Phosphorylation of PIN proteins plays an important role in generating and maintaining specific PIN polarity. In a recent study, we have shown that phosphorylation in certain conserved residues of the PIN3 hydrophilic loop (HL) modulates its subcellular localization and polarity in a cell type-specific manner in different root tissues. Here, we additionally show that the phosphorylation code of PIN3-HL is operational for the determination of PIN3 polarity in the Arabidopsis guard cell and is deciphered in a differential way even in a single tobacco cell for the intracellular trafficking of PIN3. On the other hand, PIN3 localization often remained unaltered in certain cell types irrespective of its phosphorylation status. These findings, together with previous reports, indicate that the phosphorylation code of the PIN-HL along with cell type-specific factors, kinases, and developmental/environmental cues is instrumental for the PIN trafficking to different subcellular compartments as well as different plasma membrane domains. 相似文献
3.
Development of plants and their adaptive capacity towards ever‐changing environmental conditions largely depend on the spatial distribution of the plant hormone auxin. At the cellular level, various internal and external signals are translated into specific changes in the polar, subcellular localization of auxin transporters from the PIN family thereby directing and redirecting the intercellular fluxes of auxin. The current model of polar targeting of PIN proteins towards different plasma membrane domains encompasses apolar secretion of newly synthesized PINs followed by endocytosis and recycling back to the plasma membrane in a polarized manner. In this review, we follow the subcellular march of the PINs and highlight the cellular and molecular mechanisms behind polar foraging and subcellular trafficking pathways. Also, the entry points for different signals and regulations including by auxin itself will be discussed within the context of morphological and developmental consequences of polar targeting and subcellular trafficking. 相似文献
4.
5.
生长素输出载体PIN家族研究进展 总被引:1,自引:0,他引:1
生长素极性运输调控植物的生长发育。生长素极性运输主要依赖3类转运蛋白: AUX/LAX、PIN和ABCB蛋白家族。生长素在细胞间流动的方向与PIN蛋白在细胞上的极性定位密切相关。PIN蛋白由1个中心亲水环和2个由中心亲水环隔开的疏水区组成。中心亲水环上含多个磷酸化位点,其为一些蛋白激酶的靶点。PIN蛋白受多方面调控,包... 相似文献
6.
Plant growth and development is determined by intracellular and intercellular auxin gradients that are controlled at first hand by auxin efflux catalysts of the ABCB/PGP and PIN families. ABCB transport activity was shown to be counter-actively regulated by protein phosphorylation by the AGC protein kinase, PINOID (PID), that is coordinated by interaction with the immunophilin-like FKBP42, TWISTED DWARF1 (TWD1). In contrast, PID was shown to determine PIN polarity, however, the direct impact of PID on PIN activity has yet not been tested. Co-expression in yeast indicates that PID had no effect on PIN1,2 alone but specifically inhibits interactive ABCB1-PIN1/PIN2 auxin efflux in an action that is dependent on its kinase activity. PIN1-PID co-transfection in N. benthamiana revealed that PID blocks PIN1-mediated auxin efflux without changing PIN1 location. In summary, these data provide evidence that PID phosphorylation does not only determine PIN polarity but also has a direct impact on transport activity of the activity of the binary PIN-ABCB1 complex. 相似文献
7.
8.
9.
Polar auxin transport controls multiple aspects of plant development including differential growth, embryo and root patterning and vascular tissue differentiation. Identification of proteins involved in this process and availability of new tools enabling `visualization' of auxin and auxin routes in planta largely contributed to the significant progress that has recently been made. New data support classical concepts, but several recent findings are likely to challenge our view on the mechanism of auxin transport. The aim of this review is to provide a comprehensive overview of the polar auxin transport field. It starts with classical models resulting from physiological studies, describes the genetic contributions and discusses the molecular basis of auxin influx and efflux. Finally, selected questions are presented in the context of developmental biology, integrating available data from different fields. 相似文献
10.
生长素是调控植物侧根发育的关键植物激素,生长素运输载体PIN蛋白介导其极性分布。ABI4抑制生长素极性运输蛋白基因PIN1的表达,影响生长素的极性运输,抑制侧根形成。本文概述ABI4转录因子调控侧根发育的研究进展。 相似文献
11.
Wenzel CL Schuetz M Yu Q Mattsson J 《The Plant journal : for cell and molecular biology》2007,49(3):387-398
Genetic evidence links the Arabidopsis MONOPTEROS (MP) and PIN-FORMED1 (PIN1) genes to the patterning of leaf veins. To elucidate their potential functions and interactions in this process, we have assessed the dynamics of MP and PIN1 expression during vascular patterning in Arabidopsis leaf primordia. Both genes undergo a dynamic process of gradual refinement of expression into files one to two cells wide before overt vascular differentiation. The subcellular distribution of PIN1 is also gradually refined from a non-polar distribution in isodiametric cells to strongly polarized in elongated procambial cells and provides an indication of overall directions of auxin flow. We found evidence that MP expression can be activated by auxin exposure and that PIN1 as well as DR5::GUS expression is defective in mp mutant leaves. Taken together the results suggest a feedback regulatory loop that involves auxin, MP and PIN1 and provide novel experimental support for the canalization-of-auxin-flow hypothesis. 相似文献
12.
Adriana Garay‐Arroyo Enrique Ortiz‐Moreno María de la Paz Sánchez Angus S Murphy Berenice García‐Ponce Nayelli Marsch‐Martínez Stefan de Folter Adriana Corvera‐Poiré Fabiola Jaimes‐Miranda Mario A Pacheco‐Escobedo Joseph G Dubrovsky Soraya Pelaz Elena R Álvarez‐Buylla 《The EMBO journal》2013,32(21):2884-2895
13.
By being sessile, plants have evolved a remarkable capacity to perceive and respond to changes in environmental conditions throughout their life cycle. Light represents probably the most important environmental factor that impinge on plant development because, other than supplying the energy source for photosynthesis, it also provides seasonal and positional information that are essential for the plant survival and fitness. Changes in the light environment can dramatically alter plant morphogenesis, especially during the early phases of plant life, and a compelling amount of evidence indicates that light-mediated changes in auxin homeostasis are central in these processes. Auxin exerts its morphogenetic action through instructive hormone gradients that drive developmental programs of plants. Such gradients are formed and maintained via an accurate control on directional auxin transport. This review summarizes the recent advances in understanding the influence of the light environment on polar auxin transport. 相似文献
14.
Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues fromBrassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities witheach other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BjPIN2and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 wasexpressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls.Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by ‘genome walking‘ techniqueusing primers at 5‘-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven byBjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein,epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with differentexpression patterns in B. juncea suggested the presence of a gene family. 相似文献
15.
Directional cell-to-cell movement of auxin is mediated by asymmetrically localized PIN-FORMED (PIN) auxin efflux transporters. The polar localization of PINs has been reported to be modulated by phosphorylation. In this study, the function of the phosphorylation sites of the PIN3 central hydrophilic loop (HL) was characterized. The phosphorylation sites were located in two conserved neighboring motifs, RKSNASRRSF(/L) and TPRPSNL, where the former played a more decisive role than the latter. Mutations of these phosphorylatable residues disrupted in planta phosphorylation of PIN3 and its subcellular trafficking, and caused defects in PIN3-mediated biological processes such as auxin efflux activity, auxin maxima formation, root growth, and root gravitropism. Because the defective intracellular trafficking behaviors of phospho-mutated PIN3 varied according to cell type, phosphorylation codes in PIN3-HL are likely to operate in a cell-type-specific manner. 相似文献
16.
WEI MIN NI XIAO YA CHEN ZHI HONG XU HONG WEI XUE * National Laboratory of Plant Molecular Genetics Institute of Plant Physiology Ecology ShanghaiInstitutes for Biological Sciences Chinese Academy of SciencesPartner Group of Max-Planc 《Cell research》2002,(Z1)
Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues from Brassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3 encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities with each other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BJPIN2 and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 was expressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls. Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' technique using primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven by Bjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein, epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin gene 相似文献
17.
Titapiwatanakun B Blakeslee JJ Bandyopadhyay A Yang H Mravec J Sauer M Cheng Y Adamec J Nagashima A Geisler M Sakai T Friml J Peer WA Murphy AS 《The Plant journal : for cell and molecular biology》2009,57(1):27-44
Auxin transport is mediated at the cellular level by three independent mechanisms that are characterised by the PIN-formed (PIN), P-glycoprotein (ABCB/PGP) and AUX/LAX transport proteins. The PIN and ABCB transport proteins, best represented by PIN1 and ABCB19 (PGP19), have been shown to coordinately regulate auxin efflux. When PIN1 and ABCB19 coincide on the plasma membrane, their interaction enhances the rate and specificity of auxin efflux and the dynamic cycling of PIN1 is reduced. However, ABCB19 function is not regulated by the dynamic cellular trafficking mechanisms that regulate PIN1 in apical tissues, as localisation of ABCB19 on the plasma membrane was not inhibited by short-term treatments with latrunculin B, oryzalin, brefeldin A (BFA) or wortmannin--all of which have been shown to alter PIN1 and/or PIN2 plasma membrane localisation. When taken up by endocytosis, the styryl dye FM4-64 labels diffuse rather than punctuate intracellular bodies in abcb19 (pgp19), and some aggregations of PIN1 induced by short-term BFA treatment did not disperse after BFA washout in abcb19. Although the subcellular localisations of ABCB19 and PIN1 in the reciprocal mutant backgrounds were like those in wild type, PIN1 plasma membrane localisation in abcb19 roots was more easily perturbed by the detergent Triton X-100, but not other non-ionic detergents. ABCB19 is stably associated with sterol/sphingolipid-enriched membrane fractions containing BIG/TIR3 and partitions into Triton X-100 detergent-resistant membrane (DRM) fractions. In the wild type, PIN1 was also present in DRMs, but was less abundant in abcb19 DRMs. These observations suggested a rationale for the observed lack of auxin transport activity when PIN1 is expressed in a non-plant heterologous system. PIN1 was therefore expressed in Schizosaccharomyces pombe, which has plant-like sterol-enriched microdomains, and catalysed auxin transport in these cells. These data suggest that ABCB19 stabilises PIN1 localisation at the plasma membrane in discrete cellular subdomains where PIN1 and ABCB19 expression overlaps. 相似文献
18.
19.