首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase A2 (PLA2) activity supports production of reactive oxygen species (ROS) by mammalian cells. In skeletal muscle, endogenous ROS modulate the force of muscle contraction. We tested the hypothesis that skeletal muscle cells constitutively express the calcium-independent PLA2 (iPLA2) isoform and that iPLA2 modulates both cytosolic oxidant activity and contractile function. Experiments utilized differentiated C2C12 myotubes and a panel of striated muscles isolated from adult mice. Muscle preparations were processed for measurement of mRNA by real-time PCR, protein by immunoblot, cytosolic oxidant activity by the dichlorofluorescein oxidation assay, and contractile function by in vitro testing. We found that iPLA2 was constitutively expressed by all muscles tested (myotubes, diaphragm, soleus, extensor digitorum longus, gastrocnemius, heart) and that mRNA and protein levels were generally similar among muscles. Selective iPLA2 blockade by use of bromoenol lactone (10 microM) decreased cytosolic oxidant activity in myotubes and intact soleus muscle fibers. iPLA2 blockade also inhibited contractile function of unfatigued soleus muscles, shifting the force-frequency relationship rightward and depressing force production during acute fatigue. Each of these changes could be reproduced by selective depletion of superoxide anions using superoxide dismutase (1 kU/ml). These findings suggest that constitutively expressed iPLA2 modulates oxidant activity in skeletal muscle fibers by supporting ROS production, thereby influencing contractile properties and fatigue characteristics.  相似文献   

2.
The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the soleus muscle (r = -0.38; P > 0.05). Hence, this study shows a loss of muscle function with age and suggests that long-term calorie restriction is an effective intervention against the loss of muscle function with age.  相似文献   

3.
The authors tested the hypothesis that, after denervation and reinnervation of skeletal muscle, observed deficits in specific force can be completely attributed to the presence of denervated muscle fibers. The peroneal nerve innervating the extensor digitorum longus muscle in rats was sectioned and the distal stump was coapted to the proximal stump, allowing either a large number of motor axons (nonreduced, n = 12) or a drastically reduced number of axons access to the distal nerve stump (drastically reduced, n = 18). A control group of rats underwent exposure of the peroneal nerve, without transection, followed by wound closure (control, n = 9). Four months after the operation, the maximum tetanic isometric force (Fo) of the extensor digitorum longus muscle was measured in situ and the specific force (sFo) was calculated. Cross-sections of the muscles were labeled for neural cell adhesion molecule (NCAM) protein to distinguish between innervated and denervated muscle fibers. Compared with extensor digitorum longus muscles from rats in the control (295 +/- 11 kN/m2) and nonreduced (276 +/- 12 kN/m2) groups, sFo of the extensor digitorum longus muscles from animals in the drastically reduced group was decreased (227 +/- 15 kN/m2, p < 0.05). The percentage of denervated muscle fibers in the extensor digitorum longus muscles from animals in the drastically reduced group (18 +/- 3 percent) was significantly higher than in the control (3 +/- 1 percent) group, but not compared with the nonreduced (9 +/- 2 percent) group. After exclusion of the denervated fibers, sFo did not differ between extensor digitorum longus muscles from animals in the drastically reduced (270 +/- 20 kN/m2), nonreduced (301 +/- 13 kN/m2), or control (303 +/- 10 kN/m2) groups. The authors conclude that, under circumstances of denervation and rapid reinnervation, the decrease in sFo of muscle can be attributed to the presence of denervated muscle fibers.  相似文献   

4.
The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.  相似文献   

5.
Sensory or motor "baby-sitting" has been proposed as a clinical strategy to preserve muscle integrity if motion-specific axons must regenerate over a long distance to reach denervated target muscles. Denervated muscles are innervated temporarily by using axons from nearby sensory or motor nerves. After motion specific motor axons have reached the target, the baby-sitter nerve is severed and motion-specific axons are directed to the target. Although this strategy minimizes denervation time, the requisite second episode of denervation and reinnervation might be deleterious to muscle contractile function. This study was designed to test the hypothesis that two sequential episodes of skeletal muscle denervation and reinnervation result in greater force and power deficits than a single peripheral nerve injury and repair. Adult Lewis rats underwent either transection and epineurial repair or sham exposure of the left peroneal nerve. After a 4-month recovery period, the contractile properties of the extensor digitorum longus muscle of the sham exposure group (control, n = 9) and one of the nerve division and repair groups (repair group 1, n = 9) were evaluated with measurements of the maximum tetanic isometric force, peak power, and maximal sustained power. A third group of rats underwent a second cycle of nerve division and repair (repair group 2, n = 9) at this same time point. Four months postoperatively, contractile properties of the extensor digitorum longus muscles were evaluated. Maximum tetanic isometric force and peak power were significantly reduced in repair group 2 rats as compared with repair group 1 and control rats. Maximal sustained power was not significantly different between the groups. These data support our working hypothesis that skeletal muscle contractile function is adversely affected by two cycles of denervation and reinnervation as compared with a single episode of nerve division and repair.  相似文献   

6.
We tested the effects of inhibiting the carbonic anhydrase activity of rat soleus and extensor digitorum longus muscles on the isometric contractile properties and the resistance to fatigue. SOL and EDL muscles from female rats were incubated in vitro in the presence of methazolamide, a specific inhibitor of carbonic anhydrase, before determining their contractile properties. Methazolamide had no effects on the contractile properties of the soleus muscle (10(-5) or 10(-3) M) and extensor digitorum longus (10(-3) M), except for the half-relaxation time of the soleus muscle which increased significantly. Values for half-relaxation time were significantly increased with both concentrations of the inhibitor. Muscles were then submitted to a fatigue protocol lasting 30 min. During the fatigue test, no significant difference was observed between control and 10(-5) M methazolamide soleus muscles. In presence of 10(-3) M methazolamide however, the soleus muscle showed a significantly increased resistance to fatigue compared with control preparations. No significant effect was observed with the extensor digitorum longus muscle exposed to 10(-3) M methazolamide. Results are discussed in terms of the presence of two different isoforms of carbonic anhydrase that may be associated with calcium uptake and energy metabolic processes, respectively.  相似文献   

7.
The purpose of this study was to characterize the contractile properties of individual skinned muscle fibers from insulin-treated streptozotocin-induced diabetic rats after an endurance exercise training program. We hypothesized that single-fiber contractile function would decrease in the diabetic sedentary rats and that endurance exercise would preserve the function. In the study, 28 rats were assigned to either a nondiabetic sedentary, a nondiabetic exercise, a diabetic sedentary, or a diabetic exercise group. Rats in the diabetic groups received subcutaneous intermediate-lasting insulin daily. The exercise-trained rats ran on a treadmill at a moderate intensity for 60 min, five times per week. After 12 wk, the extensor digitorum longus and soleus muscles were dissected. Single-fiber diameter, Ca(2+)-activated peak force, specific tension, activation threshold, and pCa(50) as well as the myosin heavy chain isoform expression (MHC) were determined. We found that in MHC type II fibers from extensor digitorum longus muscle, diameters were significantly smaller from diabetic sedentary rats compared with nondiabetic sedentary rats (P < 0.001). Among the nondiabetic rats, fiber diameters were smaller with exercise (P = 0.038). The absolute force-generating capacity of single fibers was lower in muscles from diabetic rats. There was greater specific tension (force normalized to cross-sectional area) by fibers from the rats that followed an endurance exercise program compared with sedentary. From the results, we conclude that alterations in the properties of contractile proteins are not implicated in the decrease in strength associated with diabetes and that endurance-exercise training does not prevent or increase muscle weakness in diabetic rats.  相似文献   

8.
Proteasome inhibitors are novel potential drugs for therapy of many diseases, and their effects are not fully understood. We investigated direct effects of peptide vinylsulfone inhibitor AdaAhx3L3VS on protein and amino acids metabolism in rat skeletal muscle. Soleus and extensor digitorum longus muscles were incubated in a medium containing 30 micromol/l AdaAhx3L3VS or no inhibitors. Total proteolysis was determined according to the rates of tyrosine release into the medium during incubation. The rates of leucine oxidation and protein synthesis were evaluated during incubation in medium containing L-[1-14C]leucine. Amino acid concentrations in the medium were measured using HPLC. AdaAhx3L3VS decreased tyrosine release into the medium by 21 and 19 %, decreased leucine incorporation into proteins by 22 and 12 %, and increased leucine oxidation by 24 and 19 % in soleus and extensor digitorum longus muscles, respectively. The release of amino acids into the medium was reduced. We conclude that AdaAhx3L3VS significantly decreased proteolysis and protein synthesis and increased leucine oxidation.  相似文献   

9.
Summary The activity of four lysosomal proteases in soleus and extensor digitorum longus muscles was studied in streptozotocin-induced diabetic rats using newly developed fluorescence histochemical and biochemical techniques. The results indicate that the content of lysosomal protease in skeletal muscle cells was decreased three weeks after the induction of diabetes. The reduction was most pronounced in the extensor digitorum longus for all the proteases tested, but in the soleus only cathepsin B and dipeptidyl peptidase II showed a decrease. Biochemical assays on total muscle homogenates and muscle extracts confirmed the histochemical observations that protease activity was significantly lower in diabetic muscles. This decrease in activity varied with the duration of diabetes beginning as early as 48 h for the soleus. In conclusion, myofibre-specific decreases in lysosomal proteases occur following diabetes.  相似文献   

10.
Extraocular muscles (EOMs) are specialized skeletal muscles that are constantly active, generate low levels of force for cross sectional area, have rapid contractile speeds, and are highly fatigue resistant. The neuronal isoform of nitric oxide synthase (nNOS) is concentrated at the sarcolemma of fast-twitch muscles fibers, and nitric oxide (NO) modulates contractility. This study evaluated nNOS expression in EOM and the effect of NO modulation on lateral rectus muscle's contractility. nNOS activity was highest in EOM compared with diaphragm, extensor digitorum longus, and soleus. Neuronal NOS was concentrated to the sarcolemma of orbital and global singly innervated fibers, but not evident in the multi-innervated fibers. The NG-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor), increased submaximal tetanic and peak twitch forces. The NO donors S-nitroso-N-acetylcysteine (SNAC) and spermineNONOate reduced submaximal tetanic and peak twitch forces. The effect of NO on the contractile force of lateral rectus muscle is greater than previously observed on other skeletal muscle. NO appears more important in modulating contraction of EOM compared with other skeletal muscles, which could be important for the EOM's specialized role in generation of eye movements.  相似文献   

11.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

12.
Anabolic effects of androgens on skeletal muscle are well documented, but the physiological and biochemical bases of these effects are poorly understood. Skeletal muscles that differ in their androgen responsiveness can be used to examine these mechanisms. We compared androgen receptor mRNA and protein levels of the rat levator ani, a perineal skeletal muscle that depends on androgens for its normal maintenance and function with that of the rat extensor digitorum longus, a limb muscle that does not require androgens. Western immunoblotting indicated that androgen receptor protein is significantly elevated in the levator ani relative to the extensor digitorum longus. Surprisingly, steady state androgen receptor mRNA levels were equivalent in these muscles, as determined by Northern blot analysis and quantitative RT-PCR. These results suggest that androgen responsiveness of skeletal muscles is determined by the level of androgen receptor protein in a particular muscle and that androgen receptor protein content is regulated by translational or post-translational mechanisms.  相似文献   

13.
The activity of the facilitated diffusion system for monosaccharides remains enhanced in soleus and extensor digitorum longus muscles after a period of contractile activity but not in vas deferens smooth muscle. This memory effect could also be demonstrated in the skeletal muscle after exposure to a hyperosmolar buffer. Extracellular calcium ions did not influence the distribution of 3-O-methyl-D-glucose after contractile activity. The most likely explanation for the memory effect is a change in the physical nature of the plasma membrane rather than an alteration in the distribution of calcium ions.  相似文献   

14.
The effect of two weeks of tenotomy on posttetanic isometric contractile responses of the rat fast: Extensor digitorum longus and slow: soleus muscles was studied in experiments on isolated muscle preparations. Direct tetanic stimulation (100 impulses, 50 Hz) increased the force of contractions by 20-25% (p < 0.05) of both, control and tenotomized fast muscles. Identical to above tetanic stimulation of control, slow muscle resulted in posttetanic depression, a decrease in the amplitude of contractile responses. Tenotomized slow muscles did not develop posttetanic depression. Caffeine (4 mM) increased and dandrolene (10 microM) decreased the force of unitary and tetanic contractions of control and tenotomized muscles. Neither drug, however, affected development of posttetanic phenomena in ether fast or slow muscles. The fact that in extensor digitorum longus, posttetanic potentiation is preserved for at least forty days of tenotomy but disappears after only 2 weeks of denervation suggests important role of neurotrophic influences in regulation of posttetanic responses of fast muscles.  相似文献   

15.
1. Contractile properties of the fast extensor digitorum longus of one-month-old rats and of the fast peroneus longus muscles of adult rabbits were studied in vitro at 36 degrees C after nerve section close to the muscle. Changes in contraction properties (prolongation) are not observed until 48 hours after denervation in the rat and 14-30 days in the rabbit. 2. At no period after denervation are differences in twitch isometric contraction properties dependent on the length of the sectioned nerve stump. This lack of dependence of contractile behavior after denervation is in contrast to many metabolic changes which show a clear dependence on the length of the nerve stump. 3. It is concluded that the onset of denervation changes in contractile behavior are related to the loss of nerve-impulse activity, while the transient early metabolic changes are related to changes of fast axoplasmic flow, initiated after nerve section and therefore dependent on length of sectioned nerve stump.  相似文献   

16.
The metabolic integrity of fully regenerated transplants was investigated by measuring induced changes in glycogen concentration. The extensor digitorum longus and the soleus muscles were cross transplanted: the extensor digitorum longus into the soleus muscle bed (SOLT) and the soleus muscle into the extensor digitorum longus bed (EDLT). The histochemical fiber type distribution of the regenerated muscles was determined and was found to transform in cross-transplanted EDLT and SOLT. After transplantation and regeneration, both muscles had initially low glycogen concentrations. However, the EDLT glycogen concentration was not significantly different from that of the contralateral extensor digitorum longus control muscle after 60 days. In the SOLT, glycogen gradually increased but remained less than in the contralateral soleus control muscle. SOLT and control soleus muscles responded with a significant glycogen depletion to an epinephrine dose two orders of magnitude less than the lowest dose affecting glycogen levels in EDLT and extensor digitorum longus muscles. These results indicate that transplanted muscles are capable of regenerating normal glycogenolytic responses and that the sensitivity of the response observed depends on the site of transplantation and is related to the type of innervation and histochemical fiber type.  相似文献   

17.
18.
Mechanical function of muscle reinnervated by end-to-side neurorrhaphy.   总被引:6,自引:0,他引:6  
End-to-side neurorrhaphy is a surgical technique for peripheral nerve reconstruction when end-to-end neurorrhaphy is not an option. To define the effectiveness of end-to-side neurorrhaphy as a method of nerve repair, the authors tested the null hypothesis: there is no difference in the mechanical function of skeletal muscle denervated and reinnervated by end-to-side versus end-to-end neurorrhaphy. Adult Lewis rats underwent either transection and end-to-end epineurial repair of the left peroneal nerve (n = 9) or end-to-side repair of the distal stump of the peroneal nerve to the side of the tibial nerve (n = 8). After a 6-month recovery period, isometric force (Fo) was measured, and specific force (sFo) was calculated for the extensor digitorum longus muscle of each animal. Immunohistochemical staining for neural cell adhesion molecule (NCAM) was performed to identify populations of denervated muscle fibers. The mean extensor digitorum longus muscle mass in the end-to-end group (195 +/- 32 g) was significantly greater than that of the end-to-side group (146 +/- 55 g) (p < 0.05). A significantly greater percentage of denervated fibers was identified in the extensor digitorum longus muscles of animals in the end-to-side group (9.4 +/- 3.2 percent) than in those in the end-to-end group (3.8 +/- 1.0 percent) (p < 0.05). Despite a lower muscle mass and a higher percentage of denervated fibers, neither Fo nor sFo was significantly different in the two groups. These data support the null hypothesis that, under appropriate circumstances, there is no difference in the recovery of whole muscle force and specific force production in muscles reinnervated by end-to-side versus end-to-end neurorrhaphy.  相似文献   

19.
Oral creatine supplementation can acutely ameliorate skeletal muscle function in older humans, but its value in the prevention of sarcopenia remains unknown. We evaluated the effects of lifelong creatine supplementation on muscle mass and morphology, contractility, and metabolic properties in a mouse model of muscle senescence. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 wk. Soleus and extensor digitorum longus muscles were tested for in vitro contractile properties, creatine content, and morphology at weeks 25 and 60. Both muscle types showed reduced phosphocreatine content at week 60 that could not be prevented by creatine. Accordingly, age-associated decline in muscle mass and contractility was not influenced by treatment. Aged soleus muscles had fewer and smaller fast-twitch glycolytic fibers irrespective of treatment received. It is concluded that lifelong creatine supplementation is no effective strategy to prevent sarcopenia in senescence-accelerated mice.  相似文献   

20.
1. Thiamine diphosphate level was higher in soleus muscle than in extensor digitorum longus muscle in various animals, whereas thiamine triphosphate level was less in the former muscle than in the latter except for mouse. 2. 2-Oxoglutarate dehydrogenase, transketolase and thiamine pyrophosphokinase activities were higher in soleus muscle than in extensor digitorum longus in rat and guinea pig. 3. The differences between rat two muscle phenotypes in thiamine diphosphate, but not thiamine triphosphate, level and the thiamine-related enzyme activities disappeared after denervation. 4. Tenotomy had little effect on thiamine phosphate levels and the thiamine-related enzyme activities in rat skeletal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号