首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J L Sims  S J Berger  N A Berger 《Biochemistry》1983,22(22):5188-5194
Inhibitors of poly(ADP-ribose) polymerase stimulated the level of DNA, RNA, and protein synthesis in DNA-damaged L1210 cells but had negligible effects in undamaged L1210 cells. The poly(ADP-ribose) polymerase inhibitors stimulated DNA repair synthesis after cells were exposed to high concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (68 and 136 microM) but not after exposure to low concentrations (13.6 and 34 microM). When the L1210 cells were exposed to 136 microM N-methyl-N'-nitro-N-nitrosoguanidine, the activation of poly(ADP-ribose) polymerase resulted in the rapid depletion of oxidized nicotinamide adenine dinucleotide (NAD+) levels and subsequent depletion of adenosine 5'-triphosphate (ATP) pools. After low doses of N-methyl-N'-nitro-N-nitrosoguanidine (13.6 microM), there were only small decreases in NAD+ and ATP. Poly(ADP-ribose) polymerase inhibitors prevented the rapid fall in NAD+ and ATP pools. This preservation of the ATP pool has a permissive effect on energy-dependent functions and accounts for the apparent stimulation of DNA, RNA, and protein synthesis. Thus, the mechanism by which poly(ADP-ribose) polymerase inhibitors stimulate DNA, RNA, and protein synthesis in DNA-damaged cells appears to be mediated by their ability to prevent the drastic depletion of NAD+ pools that occurs in heavily damaged cells, thereby preserving the cells' ability to generate ATP and maintain energy-dependent processes.  相似文献   

2.
Alkylating agents cause a marked depletion of cellular NAD+ levels by activating nuclear ADP-ribosyl transferase (ADPRT), which utilizes NAD+ as a substrate in the synthesis of poly(ADP-ribose). As a consequence of NAD+ depletion, it is possible that cellular ATP pools could be depleted. Because of this, exogenously supplied NAD+ had been proposed as a way to counteract some of the effects of an alkylator. We found that exogenously supplied NAD+ significantly increased intracellular levels of NAD+ in MMS- and MNNG-treated V79 Chinese hamster cells. Cytotoxicity was not changed by the exogenously supplied NAD+, however. 3-Aminobenzamide (3-ABA), an ADPRT inhibitor, prevented the depletion of intracellular NAD+ by MMS or MNNG treatment and potentiated cytotoxicity. As was the case without 3-ABA, exogenously supplied NAD+ plus 3-ABA did not change the cytotoxicity, even though NAD+ levels were increased. Intracellular ATP levels were also measured and were found to be unaffected following MMS treatment, and only slightly depleted following MNNG treatment. Exogenously supplied NAD+ raised these levels above those for their respective controls. Because survival was unaffected by elevated levels of NAD+ and ATP, our results suggest that depletion of cellular NAD+ pools following MMS and MNNG treatment is not a critical factor in determining cytotoxicity for these V79 cells. The energy reserves of V79 cells, at doses of MMS or MNNG which kill 99% of the cells, are apparently adequate to maintain normal levels of ATP.  相似文献   

3.
Cell death by oxidative stress has been proposed to be based on suicidal NAD depletion, typically followed by ATP depletion, caused by the NAD-consuming enzyme poly(ADP)ribose polymerase, which becomes activated by the presence of excessive DNA-strand breaks. In this study NAD+, NADH and ATP levels as well as DNA-strand breaks (assayed by alkaline elution) were determined in Chinese hamster ovary (CHO) cells treated with either H2O2 or hyperoxia to a level of more than 80% clonogenic cell killing. With H2O2 extensive DNA damage and NAD depletion were observed, while at a higher H2O2 dosage ATP also became depleted. In agreement with results of others, the poly(ADP)ribose polymerase inhibitor 3-aminobenzamide completely prevented NAD depletion. However, both H2O2-induced ATP depletion and cell killing were unaffected by the inhibitor, suggesting that ATP depletion may be a more critical factor than NAD depletion in H2O2-induced killing of CHO cells. With hyperoxia, only moderate DNA damage (2 X background) and no NAD depletion were observed, whereas ATP became largely (70%) depleted. We conclude that (1) there is no direct relation between ATP and NAD depletion in CHO cells subjected to toxic doses of H2O2 or hyperoxia; (2) H2O2-induced NAD depletion is not by itself sufficient to kill CHO cells; (3) killing of CHO cells by hyperoxia is not due to NAD depletion, but may be due to depletion of ATP.  相似文献   

4.
Shen W  Wei Y  Dauk M  Tan Y  Taylor DC  Selvaraj G  Zou J 《The Plant cell》2006,18(2):422-441
A mitochondrial glycerol-3-phosphate (G-3-P) shuttle that channels cytosolic reducing equivalent to mitochondria for respiration through oxidoreduction of G-3-P has been extensively studied in yeast and animal systems. Here, we report evidence for the operation of such a shuttle in Arabidopsis thaliana. We studied Arabidopsis mutants defective in a cytosolic G-3-P dehydrogenase, GPDHc1, which, based on models described for other systems, functions as the cytosolic component of a G-3-P shuttle. We found that the gpdhc1 T-DNA insertional mutants exhibited increased NADH/NAD+ ratios compared with wild-type plants under standard growth conditions, as well as impaired adjustment of NADH/NAD+ ratios under stress simulated by abscisic acid treatment. The altered redox state of the NAD(H) pool was correlated with shifts in the profiles of metabolites concerning intracellular redox exchange. The impairment in maintaining cellular redox homeostasis was manifest by a higher steady state level of reactive oxygen species under standard growth conditions and by a significantly augmented hydrogen peroxide production under stress. Loss of GPDHc1 affected mitochondrial respiration, particularly through a diminished capacity of the alternative oxidase respiration pathway. We propose a model that outlines potential involvements of a mitochondrial G-3-P shuttle in plant cells for redox homeostasis.  相似文献   

5.
The effect of DNA damage caused by N-methyl-N'-nitro-nitrosoguanidine (MNNG) on poly(ADP-ribose) synthesis, NAD levels, and purine nucleotide metabolism was studied in human T-lymphoblasts. Excessive DNA breaks caused by MNNG activated poly(ADP-ribose) polymerase and rapidly consumed intracellular NAD. NAD depletion was followed by rapid catabolism of ATP as well as induction of total purine nucleotide catabolism leading to excretion of purine catabolic products. MNNG-treated cells were not able to replenish the intracellular nucleotide pools due to the depletion of intracellular ATP and phosphoribosylpyrophosphate pools which are required for de novo purine biosynthesis. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide prevented both the depletion of NAD pools and the associated changes in purine nucleotide metabolism.  相似文献   

6.
Acute ammonia toxicity is mediated by excessive activation of NMDA receptors. Activation of NMDA receptors leads to activation of poly(ADP-ribose) polymerase (PARP) which mediates NMDA excitotoxicity. PARP is activated following DNA damage and may lead to cell death via NAD+ and ATP depletion. The aim of the present work was to assess whether acute ammonia intoxication in vivo leads to increased PARP in brain cells nuclei and to altered NAD+ and superoxide metabolism and the contribution of NMDA receptors to these alterations. Acute ammonia intoxication increases PARP content twofold in brain cells nuclei.NAD+ content decreased by 55% in rats injected with ammonia. This was not due to decreased NAD+ synthetase nor increased NAD+ hydrolase activities and would be due to increased NAD+ consumption by PARP. Superoxide radical formation increased by 75% in nuclei of brains of rats injected with ammonia, that also induced protein nitrotyrosylation and DNA damage. Blocking NMDA receptors prevented ammonia-induced PARP, superoxide and nitrotyrosylation increase, DNA damage and NAD+ decrease. These results show that acute ammonia intoxication in vivo leads to activation of NMDA receptors, leading to increased superoxide formation and PARP content and depletion of NAD+ in brain cells nuclei that contribute to ammonia toxicity.  相似文献   

7.
Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD+, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD+ pool, and of NAD+-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD+ levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.  相似文献   

8.
The respective roles of H2O2 and .OH radicals was assessed from the protective effects of catalase and the iron chelator o-phenanthroline on 1) the inhibition of protein synthesis, and 2) DNA damage and the related events (activation of the DNA repairing enzyme poly(ADP)ribose polymerase with the associated depletion of NAD and ATP stores) in cultured endothelial cells exposed to the enzyme reaction hypoxanthine-xanthine oxidase (HX-XO) or pure H2O2. Catalase added in the extracellular phase completely prevented all of these oxidant-induced changes. O-phenanthroline afforded a complete protective effect against DNA strand breakage and the associated activation of the enzyme poly(ADP)ribose polymerase. By contrast, iron chelation was only partially effective in maintaining the cellular NAD and ATP contents, as well as the protein synthetic activity. In addition, the ATP depletion following oxidant injury was much more profound than NAD depletion. These results indicate that: 1) .OH radical was most likely the ultimate O2 species responsible for DNA damage and activation of poly(ADP)ribose polymerase; 2) both H2O2 and .OH radicals were involved in the other cytotoxic effects (inhibition of protein synthesis and reduction of NAD and ATP stores); and 3) NAD and ATP depletion did not result solely from activation of poly(ADP)ribose polymerase, but other mechanisms are likely to be involved. These observations are also compatible with the existence of a compartmentalized intracellular iron pool.  相似文献   

9.
K562 erythroleukemic cells cultured at low population density in the absence of serum die within 12-24 hours, unless 0.1 mM glyoxylic acid is added to the culture medium. Earlier events, preceding cell death and occurring within 2 hours culture, are: a) a marked drop of both the NAD+/NADH ratio and the NAD+ concentration, which is prevented by 10mM benzamide, b) an increased biosynthesis of NAD+, leading to extensive depletion of cellular ATP. In the presence of 0.1 mM glyoxylic acid the NAD+/NADH ratio as well as their absolute concentrations remain unchanged, while NAD+ biosynthesis is absent. A NAD+/NADH glycohydrolase activity is present in the cell extract, inhibited by 10 mM benzamide and with a higher affinity for NADH than for NAD+. Preservation of a high NAD+/NADH ratio by glyoxylic acid apparently prevents enzyme activity and the related loss of pyridine nucleotides.  相似文献   

10.
Incubation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with the antibiotic pentalenolactone (1) resulted in time-dependent, irreversible inhibition of GAPDH. The kinetics of inactivation were biphasic, exhibiting an initial rapid phase and a slower second phase. Pentalenolactone methyl ester (2) also irreversibly inactivated GADPH, albeit at a slower rate and with a higher KI. The substrate glyceraldehyde-3-phosphate (G-3-P) afforded protection against inactivation by 1, whereas the presence of NAD+ in the incubation mixture stimulated the inactivation by increasing the apparent affinity of the enzyme for the inhibitor. In steady-state kinetic experiments, 1 acted as a competitive inhibitor of GAPDH with respect to G-3-P but exhibited uncompetitive inhibition with respect to NAD+. Inactivation of NAD+-free apo-GAPDH by 1 showed simple pseudo-first-order kinetics. By titrating the free thiol residues of partially inactivated GAPDH, it was found that both pentalenolactone and pentalenolactone methyl ester react with all four Cys-SH residues of the tetrameric GAPDH.  相似文献   

11.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

12.
Effects of hyperthermia and nicotinamide on ADP-ribosyl transferase activity (ADPRT), unscheduled DNA synthesis (UDS), NAD+- and ATP-pools and cytotoxicity were investigated in gamma-irradiated human mononuclear leukocytes. A significant decrease in radiation-induced UDS after heat treatment for 45 min was found. Nicotinamide increased the UDS levels in irradiated cells, but no effect of hyperthermia on these increased UDS values was observed. In the presence of 2 mM nicotinamide radiation-induced ADPRT activity was reduced to about 50 per cent. However, hyperthermia for 45 min was found to have no effect on the enzyme activity for temperatures below 46 degrees C. Nicotinamide increased the NAD+ pool in unirradiated cells. Damaging the cells with gamma-radiation leads to a severe depletion of the NAD+ pool. The NAD+ pool is restored, however, if the cells repair for 5 h at 37 degrees C. When radiation-damaged cells were treated with hyperthermia, exogenously supplied nicotinamide could not be converted to NAD+ in sufficient amounts to prevent NAD+ depletion. These data indicate that the radiosensitizing effect of heat and nicotinamide could both be explained by effects on the enzyme ADPRT, i.e. nicotinamide by directly blocking the enzyme and hyperthermia by limiting the co-substrate (NAD+).  相似文献   

13.
It has been proposed that NAD depletion resulting from excessive activation of poly(ADP-ribose) polymerase is responsible for secondary energy failure after transient cerebral ischemia. However, this hypothesis has never been verified by measurement of ATP and NAD levels in the same tissue sample. In this study, we therefore investigated the effect of transient focal cerebral ischemia on the temporal profiles of changes in the levels of energy metabolites and NAD. Ischemia was induced in mice by occluding the left middle cerebral artery using the intraluminal filament technique. Animals were subjected to 1-h ischemia, followed by 0, 1, 3, 6, or 24 h of reperfusion. During ischemia, ATP levels, total adenylate pool, and adenylate energy charge dropped to approximately 20, 50, and 40% of control, respectively, whereas NAD levels remained close to control. Energy state recovered transiently, peaking at 3 h of recovery (ATP levels and total adenylate pool recovered to 78 and 81% of control). In animals subjected to reperfusion of varying duration, the extent of ATP depletion was clearly more pronounced than that of NAD. The results imply that depletion of NAD pools did not play a major role in secondary disturbances of energy-producing metabolism after transient focal cerebral ischemia. Changes in ATP levels were closely related to changes in total adenylate pool (p<0.001). The high energy charge after 6 h of reperfusion (0.90 versus a control value of 0.93) and the close relationship between the decline of ATP and total adenylate pool suggest that degradation or a washout of adenylates (owing to leaky membranes) rather than a mismatch between energy production and consumption is the main causative factor contributing to the secondary energy failure observed after prolonged recovery.  相似文献   

14.
The sequential enzyme assay as previously described has been used to study various effects on the three enzymes in human red cells involved in the phosphorylation of galactose: galactokinase, galactose-1-phosphate uridyl transferase and uridine diphospho-galactose-4-epimerase.
  • 1 Enzyme activities in undiluted lysates appear to reflect the respective activities in whole cells.
  • 2 Added extracellular Gal-1-P, G-1-P, UDPGal and UPDG do not affect enzyme activities in whole cells.
  • 3 The kinase and transferase enzymes do not appear to be associated with the membrane fraction of the red cells.
  • 4 Galactokinase activity is inhibited by G-6-P and Gal-1-P, but not by glucose, G-1-P, UDPG, UDPGal, UTP or NAD+. It is inhibited by ATP and ADP in high concentration.
  • 5 Galactose-1-phosphate uridyl transferase activity is inhibited by G-1-P, G-6-P, UDPG, UDPGal, ATP, and ADP. It is not affected by UTP, NAD+, or galactose.
  • 6 Uridine diphospho-galactose-4-epimerase activity is inhibited by UDPG, ATP, ADP, UTP and NADH. It is stimulated by NAD+ and possibly by Gal-1-P. It is unaffected by G-1-P, G-6-P.
  • 7 The rates of the three reactions decrease with decreasing temperature. The activities of transferase and epimerase are inactivated at the same rate, the kinase activity is inactivated more slowly.
  • 8 Dilution experiments indicate the presence in lysates of a pool of UDPG (or, possibly UDPGal) which regulates the activities transferase and the epimerase enzymes.
  • 9 Results of dilution experiments suggest that the radioactive product of the transferase enzyme is different from commercially available UDPGal-u-14C.
  • 10 ATP, UTP and UDPG interact with some substance(s) in the red cell lysate to cause a time dependent inactivation of the epimerase. These interactions are the result of glucose metabolism.
  相似文献   

15.
Nicotinamide-adenine dinucleotide (NAD+) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD+ levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase ( ADPRT ) also increased linearly with radiation dose. The decrease of NAD+ was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79- AL162 /S-10. An inhibitor of ADPRT , m-aminobenzamide, largely prevented the depletion of cellular NAD+ and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D2O--which inhibit repair of radiation-induced potentially lethal damage--enhanced the depletion of NAD+ and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD+ metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage.  相似文献   

16.
Pyridine nucleotides are critical during oxidative stress due to their roles in reductive reactions and energetics. The aim of the present study was to examine pyridine nucleotide changes in six brain regions of mice after an intracerebroventricular injection of the oxidative stress inducing agent, t-butyl hydroperoxide (t-BuOOH). A secondary aim was to investigate the correlation between NAD+ levels and DNA fragmentation. Here, we demonstrate that t-BuOOH induced a rapid oxidation of NADPH and a slow depletion of NAD+ in most brain regions. A slight increase in NADH also occurred in five brain regions. NAD+ depletion was associated with increased DNA fragmentation. This suggests the initiation of a death cascade involving poly(ADP-ribose) polymerase (PARP), NAD+, ATP depletion and consequent cell death in brain tissue. PARP activity was accelerated in some brain regions after 20 min of oxidative stress. To counteract oxidative stress induced toxicity, NAD+ levels were increased in the brain using an intraperitoneal injection of nicotinamide. A surplus of brain NAD+ prevented DNA fragmentation in some brain regions. Nicotinamide administration also resulted in higher brain NADH, NADP+ and NADPH levels in some regions. Their synthesis was further upregulated during oxidative stress. Nicotinamide as a precursor for NAD+ may provide a useful therapeutic strategy in the treatment of neurodegeneration.  相似文献   

17.
Effects of hyperthermia (42.5 degrees C) and gamma radiation (30 Gy) on ADP-ribosyl transferase, NAD+, and ATP pools in human mononuclear leukocytes have been investigated. It was found that the gamma-ray activation level of the enzyme was not influenced by this hyperthermia for 45 min. Following deprivation of ATP synthesis by 2,4-dinitrophenol, an uncoupler of the oxidative phosphorylation, and omitting glucose from the culture medium, the NAD+ pool was reduced to about 60% of control value. The potentiation of ATP production by exogenously supplied adenosine was reduced after a combined treatment of the cells with hyperthermia and gamma radiation. Mitochondrial and endoplasmic changes within the mononuclear leukocytes were also observed. Based on these findings a model for the hyperthermia effect is proposed.  相似文献   

18.
In extracts from the adductor muscle of the shell-fish, Pecten maximus, glycogen synthetase (EC.2.4.1.11) was found. The enzyme occurs predominantly as D form (glucose-6-P dependent for activity). An I form (G-6-P independent) was also present. Kinetics of glycogen synthetase showed that the Ka for G-6-P in the D form was 10 fold higher than in the I form. Both forms of glycogen synthetase were interconverted through reactions catalyzed by phosphatase and kinase enzymes respectively. Glucose-6-P and Mg+2 must be present to stabilize glycogen synthetase and to activate the synthetase D phosphatase, found in the 90,000 X g protein-glycogen complex. The conversion of synthetase D to I was inhibited by F-, glycogen, ATP and UTP. When F- was present the effect of G-6-P on synthetase and phosphatase suggested that conversion involved the existence of more than a single glycogen synthetase phosphatase enzyme. ATP and Mg+2 were necessary for the conversion of synthetase I to D, and the conversion was stimulated by cAMP.  相似文献   

19.
Phosphoglucomutase (PGM)1 catalyzes the reversible conversion reaction between glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P). Although both G-1-P and G-6-P are important intermediates for glucose and glycogen metabolism, the biological roles and regulatory mechanisms of PGM1 are largely unknown. In this study we found that T553 is obligatory for PGM1 stability and the last C-terminal residue, T562, is critical for its activity. Interestingly, depletion of PGM1 was associated with declined cellular glycogen content and decreased rates of glycogenolysis and glycogenesis. Furthermore, PGM1 depletion suppressed cell proliferation under long-term repetitive glucose depletion. Our results suggest that PGM1 is required for sustained cell growth during nutritional changes, probably through regulating the balance of G-1-P and G-6-P in order to satisfy the cellular demands during nutritional stress.  相似文献   

20.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the conversion of glucose-6-phosphate (G-6-P) to inositol-1-phosphate. In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent thermozyme that catalyzes the first step in the biosynthetic pathway of the unusual osmolyte di-myo-inositol-1,1'-phosphate. Several site-specific mutants of the archaeal mIPS were prepared and characterized to probe the details of the catalytic mechanism that was suggested by the recently solved crystal structure and by the comparison to the yeast mIPS. Six charged residues in the active site (Asp225, Lys274, Lys278, Lys306, Asp332, and Lys367) and two noncharged residues (Asn255 and Leu257) have been changed to alanine. The charged residues are located at the active site and were proposed to play binding and/or direct catalytic roles, whereas noncharged residues are likely to be involved in proper binding of the substrate. Kinetic studies showed that only N255A retains any measurable activity, whereas two other mutants, K306A and D332A, can carry out the initial oxidation of G-6-P and reduction of NAD+ to NADH. The rest of the mutant enzymes show major changes in binding of G-6-P (monitored by the 31P line width of inorganic phosphate when G-6-P is added in the presence of EDTA) or NAD+ (detected via changes in the protein intrinsic fluorescence). Characterization of these mutants provides new twists on the catalytic mechanism previously proposed for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号