首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The study of the indices of developmental homeostasis in natural populations leads to the definition of the fundamentals of population developmental biology, which is associated with the assessment of the nature of phenotypic diversity and the mechanisms of population dynamics and microevolutionary changes. Characterization of environmental quality based on the assessment of population status by developmental homeostasis determines the fundamentals of the health of environment concept. The use of the ideas of developmental homeostasis and the health of environment in the studies of homeostatic mechanisms of biological systems of different levels (from the organism and population to the community and ecosystem) is promising. This gives new opportunities for understanding the mechanisms that provide sustainability and their ratio at different levels as well as for the characterization of ontogenetic stability significance. The notion of developmental homeostasis, or homeorhesis, is promising for the elaboration of the ecological and biological basics of sustainable development.  相似文献   

3.
Cytogenetic homeostasis in natural populations under natural conditions and anthropogenic stress was estimated according to the frequency of chromosome aberrations in somatic cells for six species of small mammals. Cytogenetic homeostasis was disturbed under the stress effect of increased density during population cycles, at the ecological periphery, and in the case of environmental chemical and radiation contamination. Cytogenetic homeostasis disturbances were related to changes in other indices of homeostasis, such as developmental stability and immune status, suggesting the use of the cytogenetic approach for estimating the general state of individuals in natural populations.  相似文献   

4.
Cytogenetic homeostasis in natural populations under natural conditions and anthropogenic stress was estimated according to the frequency of chromosome aberrations in somatic cells for six species of small mammals. Cytogenetic homeostasis was disturbed under the stress effect of increased density during population cycles, at the ecological periphery, and in the case of environmental chemical and radiation contamination. Cytogenetic homeostasis disturbances were related to changes in other indices of homeostasis, such as developmental stability and immune status, suggesting the use of the cytogenetic approach for estimating the general state of individuals in natural populations.  相似文献   

5.
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene‐targeted PCR‐based assay for next‐generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single‐gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.  相似文献   

6.
The study of the developmental stability in natural populations is a promising direction of population developmental biology, which opens new possibilities for estimation of the nature of the observed phenotypic diversity and understanding the mechanisms of population dynamics and microevolutionary transformations. This direction of the studies allows one to approach the estimation of the condition of natural populations. A special analysis of possible changes in the developmental stability indicators under different anthropogenic effects allows one to characterize this approach as one of the main within the methodology of the health of environment estimation based on the organism condition characteristics by the developmental homeostasis. The approach seems promising for the estimation and monitoring of the condition of natural populations of different species as well as for the environmental quality estimation.  相似文献   

7.
遗传多样性的取样策略   总被引:48,自引:3,他引:48  
金燕  卢宝荣 《生物多样性》2003,11(2):155-161
合理取样是生物多样性有效保护、利用和研究所面临的最基本问题 ,它在很大程度上受到植物自身的生物学特性、环境条件和取样目的的影响。遗传多样性的取样策略是指对一定地理分布范围内的生物个体取样时 ,使样本具有代表性和包含尽可能多的遗传变异的最佳取样方法 ,包括了取样数目 (一个给定区域的居群数和一个居群的个体数 )以及取样方式。包括“哈迪 温伯格平衡 (Hardy WeinbergEquilibrium)”定律在内的居群遗传学基本原理是研究取样策略的理论基础 ,在此基础上可以对居群内的取样个体数及应获取的居群数进行理论计算 ,同时还可以根据物种居群的遗传结构特点和环境条件的异质性来决定取样的方式。因此 ,应该依据研究对象本身的特点和取样的目的来确定某一特定区域的居群取样数 ,以及某一居群内的样本数及取样方式。  相似文献   

8.
Metric (e.g., body size) and meristic (e.g., bristle number) traits are of general use in quantitative genetic studies, and the phenotypic variance is subdivided into a genetic and a non-genetic environmental component. The non-genetic variance may have two origins: a common garden effect between individuals and a developmental instability within the same individual. Developmental instability may be studied by considering the fluctuating asymmetry (FA) between the two sides of the body. The isofemale line technique is a convenient method for investigating the architecture of natural populations but has been rarely implemented for investigating FA. In this paper, we use this experimental design for analyzing four meristic traits in eight populations of the cosmopolitan Zaprionus indianus. A study of the correlation between left and right side of each line revealed that almost 90% of the variability was due to a developmental noise, while a much higher correlation among the means of the lines from the same population was observed. A slight trend toward a directional asymmetry was observed: more thoracic bristles on the left side. Four kinds of indices, scaled or non-scaled to the mean were used for comparing the different traits. Unscaled values (mean absolute values or standard deviation of each line) revealed a linear increase with the means. Interestingly the results of ovariole number were included in the same regression. With the scaled indices (mean absolute divided by each individual value or stadard deviation devided by the mean), the differences among traits were considerably decreased, but still remained significant. The mean FA of the various traits were not correlated, suggesting that each trait harbors its own developmental stability. The CVs of FA were high with a magnitude similar to those of the trait themselves, slightly less than 10%. Finally, even with the isofemale line design, which is a powerful means for unravelling slight genetic variations, we did not to find any clear indication of a genetic component of FA under the optimal environmental conditions used in this study.  相似文献   

9.
N D Ozerniuk 《Ontogenez》1989,20(2):117-127
The principle of minimum of energy in ontogenesis has been formulated on the basis of data concerning age changes in energetic metabolism, as well as the influence of ecological factors on this process. According to this principle the smallest expenditures of energy are observed in the zone of the most favorable developmental conditions. The minimal level of energetic metabolism at every developmental stage that corresponds to the most stable state of organism is treated as homeostasis and the developmental stability is treated as homeorrhesis. Regulation mechanisms of energetic metabolism during ontogenesis and under the influence of environmental factors are analyzed.  相似文献   

10.
If there exists a critical population size above which environmental degradation becomes serious, the population should be suppressed or reduced upon reaching that level. Since population size control is accompanied by costs, a reduction in control frequency may be preferable from an economic viewpoint. Although this can be realized by decreasing the population size drastically in each control, such management may result in increased population extinction probability according to environmental stochasticity. The effects of population management on both mean population persistence time and management cost were analyzed theoretically using a diffusion process. The model showed the functional forms of both mean persistence time and control frequency explicitly; these decreased with an increasing number of individuals removed from the population in each control operation. Based on the analysis, indices representing management costs are proposed. Mean persistence time is generally an increasing function of the cost indices. Nevertheless, if the cost of each control increases with the number of individuals removed, even the most conservative management practice (continuous control) may not be overly expensive.  相似文献   

11.
Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life‐history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas the latter represents a more unpredictable environment. We quantified heritabilities using restricted maximum likelihood (REML) procedures within an “Information Theoretical” framework in a full‐sib design. Whereas development time, pupal mass, and resting metabolic rate showed no genotype‐by‐environment interaction for genetic variation, for thorax ratio and fat percentage the heritability increased under the cool temperature, dry season environment. Additionally, for fat percentage heritability estimates increased under food limitation. Hence, the traits most intimately related to polyphenism in B. anynana show the most environmental‐specific heritabilities as well as some indication of cross‐environmental genetic correlations. This may reflect a footprint of natural selection and our future research is aimed to uncover the genes and processes involved in this through studying season and condition‐dependent gene expression.  相似文献   

12.

Background  

The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions, average body asymmetry (or "fluctuating asymmetry") can estimate the developmental instability of the population. The component of developmental instability not explained by intrapopulational differences in gene or environment (or their interaction) can be further defined as internal developmental noise. Surprisingly, developmental noise remains largely unexplored despite its potential influence on our interpretations of developmental stability, canalization, and evolvability. Proponents of fluctuating asymmetry as a bioindicator of environmental or genetic stress, often make the assumption that developmental noise is minimal and, therefore, that phenotype can respond sensitively to the environment. However, biologists still have not measured whether developmental noise actually comprises a significant fraction of the overall environmental response of fluctuating asymmetry observed within a population.  相似文献   

13.
Recent work has shown that genetic robustness can either facilitate or impede adaptation. But the impact of environmental robustness on adaptation remains unclear. Environmental robustness helps ensure that organisms consistently develop the same phenotype in the face of "environmental noise" during development. Under purifying selection, those genotypes that express the optimal phenotype most reliably will be selectively favored. The resulting reduction in genetic variation tends to slow adaptation when the population is faced with a novel target phenotype. However, environmental noise sometimes induces the expression of an alternative advantageous phenotype, which may speed adaptation by genetic assimilation. Here, we use a population-genetic model to explore how these two opposing effects of environmental noise influence the capacity of a population to adapt. We analyze how the rate of adaptation depends on the frequency of environmental noise, the degree of environmental robustness in the population, the distribution of environmental robustness across genotypes, the population size, and the strength of selection for a newly adaptive phenotype. Over a broad regime, we find that environmental noise can either facilitate or impede adaptation. Our analysis uncovers several surprising insights about the relationship between environmental noise and adaptation, and it provides a general framework for interpreting empirical studies of both genetic and environmental robustness.  相似文献   

14.
DEVELOPMENTAL STABILITY, DISEASE AND MEDICINE   总被引:10,自引:0,他引:10  
Developmental stability reflects the ability of a genotype to undergo stable development of a phenotype under given environmental conditions. Deviations from developmental stability arise from the disruptive effects of a wide range of environmental and genetic stresses, and such deviations are usually measured in terms of fluctuating asymmetry and phenodeviants. Fluctuating asymmetry is the most sensitive indicator of the ability to cope with stresses during ontogeny. There is considerable evidence that developmental stability, and especially fluctuating asymmetry, is a useful measure of phenotypic and genetic quality, because it covaries negatively with performance in multiple fitness domains in many species, including humans. It is proposed that developmental stability is an important marker of human health. Our goal is to initiate formally the integration of the sciences of evolutionary biology, developmental biology and medicine. We believe that this integrative framework provides a significant addition to the growing field of Darwinian medicine. The literature linking developmental stability and disease in humans is reviewed. Recent biological theoretical treatments pertaining to developmental stability are applied to a range of human health issues such as genetic diseases, ageing and survival, subfertility, abortion, child maltreatment by parents, cancer, infectious diseases, physiological and mental health, and physical attractiveness as a health certification.  相似文献   

15.
Organisms employ a multitude of strategies to cope with the dynamical environments in which they live. Homeostasis and physiological plasticity buffer changes within the lifetime of an organism, while stochastic developmental programs and hypermutability track changes on longer time-scales. An alternative long-term mechanism is "genetic potential"--a heightened sensitivity to the effects of mutation that facilitates rapid evolution to novel states. Using a transparent mathematical model, we illustrate the concept of genetic potential and show that as environmental variability decreases, the evolving population reaches three distinct steady state conditions: (1) organismal flexibility, (2) genetic potential, and (3) genetic robustness. As a specific example of this concept we examine fluctuating selection for hydrophobicity in a single amino acid. We see the same three stages, suggesting that environmental fluctuations can produce allele distributions that are distinct not only from those found under constant conditions, but also from the transient allele distributions that arise under isolated selective sweeps.  相似文献   

16.
As potential to adapt to environmental stress can be essential for population persistence, knowledge on the genetic architecture of local adaptation is important for conservation genetics. We investigated the relative importance of additive genetic, dominance and maternal effects contributions to acid stress tolerance in two moor frog (Rana arvalis) populations originating from low and neutral pH habitats. Experiments with crosses obtained from artificial matings revealed that embryos from the acid origin population were more tolerant to low pH than embryos from the neutral origin population in embryonic survival rates, but not in terms of developmental stability, developmental and growth rates. Strong maternal effect and small additive genetic contributions to variation were detected in all traits in both populations. In general, dominance contributions to variance in different traits were of similar magnitude to the additive genetic effects, but dominance effects outweighed the additive genetic and maternal effects contributions to early growth in both populations. Furthermore, the expression of additive genetic variance was independent of pH treatment, suggesting little additive genetic variation in acid stress tolerance. The results suggest that although local genetic adaptation to acid stress has taken place, the current variation in acid stress tolerance in acidified populations may owe largely to non-genetic effects. However, low but significant heritabilities (h 2 0.07–0.22) in all traits – including viability itself – under a wide range of pH conditions suggests that environmental stress created by low pH is unlikely to lower moor frog populations' ability to respond to selection in the traits studied. Nevertheless, acid conditions could lower populations' ability to respond to selection in the long run through reduction in effective population size.  相似文献   

17.
Phenotypic polymorphism is a consequence of developmental plasticity, in which the trajectories of developing organisms diverge under the influence of cues. Environmental and genetic phenotype determination are the two main categories of polymorphic development. Even though both may evolve as a response to varied environments, they are traditionally regarded as fundamentally distinct phenomena. They can however be joined into a single framework that emphasizes the parallel roles of environmental and genetic cues in phenotype determination. First, from the point of view of immediate causation, it is common that phenotypic variants can be induced either by environmental or by allelic variation, and this is referred to as gene-environment interchangeability. Second, from the point of view of adaptation, genetic cues in the form of allelic variation at polymorphic loci can play similar roles as environmental cues in providing information to the developmental system about coming selective conditions. Both types of cues can help a developing organism to fit its phenotype to selective circumstances. This perspective of information in environmental and genetic cues can produce testable hypotheses about phenotype determination, and can thus increase our understanding of the evolution of phenotypic polymorphism.  相似文献   

18.
Population genetic studies carried out on penaeid shrimps have disclosed different patterns of population subdivision, revealing new aspects of shrimp biology as well as the effects of historical contingency molding those patterns. However, the stability of observed allele frequencies over time still remains untested. The objective of this article is to show the analysis of the temporal variation of allozymes in a shrimp species inhabiting Cuba which proves that the genetic structure of this species could significantly change in time. The study involves four populations of Farfantepenaeus notialis sampled in a period of 8 years. The significant statistics obtained from partitions observed in 1995 were not detected in 2003 (as suggested by AMOVA and F(ST)), whereas temporal genetic differentiation and heterozygosity became highly significant. The results strongly suggest that the effect of migrations could be the cause for the loss of F. notialis genetic structure in 2003. It is therefore imperative to call attention on the vulnerability of these populations when facing unstable environmental and habitat conditions.  相似文献   

19.
Although there is keen interest in the potential adaptive value of epigenetic variation, it is unclear what conditions favor the stability of these variants either within or across generations. Because epigenetic modifications can be environmentally sensitive, existing theory on adaptive phenotypic plasticity provides relevant insights. Our consideration of this theory suggests that stable maintenance of environmentally induced epigenetic states over an organism's lifetime is most likely to be favored when the organism accurately responds to a single environmental change that subsequently remains constant, or when the environmental change cues an irreversible developmental transition. Stable transmission of adaptive epigenetic states from parents to offspring may be selectively favored when environments vary across generations and the parental environment predicts the offspring environment. The adaptive value of stability beyond a single generation of parent–offspring transmission likely depends on the costs of epigenetic resetting. Epigenetic stability both within and across generations will also depend on the degree and predictability of environmental variation, dispersal patterns, and the (epi)genetic architecture underlying phenotypic responses to environment. We also discuss conditions that favor stability of random epigenetic variants within the context of bet hedging. We conclude by proposing research directions to clarify the adaptive significance of epigenetic stability.  相似文献   

20.
再论生物多样性与生态系统的稳定性   总被引:75,自引:1,他引:74  
王国宏 《生物多样性》2002,10(1):126-134
本文在简述生物多样性与生态系统稳定性研究动态的基础上,从生物多样性和稳定性的概念出发,指出忽视多样性和稳定性的生物组织层次可能是造成观点纷争的根源之一。特定生物组织层次的稳定性可能更多地与该层次的多样性特征相关,探讨多样性和稳定性的关系应从不同的生物组织层次上进行,抗动是生态系统多样性与稳定性关系悖论中的重要因子,如果根据扰动的性质,把生态系统(或其他组织层次)区分为受非正常外力干扰和受环境因子时间异质性波动干扰2类系统,稳定性的4个内涵可以理解为:对于受非正常外力干扰的系统而言,抵抗力和恢复力是稳定性适宜的测度指标;对于受环境因子时间异质性波动干扰和系统而言。利用持久性和变异性衡量系统的稳定性则更具实际意义。结合对群落和种群层次多样性与稳定性相关机制的初步讨论,本文认为;在特定的前提下,多样性可以导致稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号