首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
植物抗病基因的进化   总被引:3,自引:0,他引:3  
庄军  刘志昕 《遗传》2004,26(6):962-968
植物抗病基因在进化中形成了几种共有的进化形式。植物祖先抗病基因的复制创造了新基因座。基因间和基因内重组导致了变异,也导致了新特异性抗病基因的产生。另外,与特异性识别相关的富含亮氨酸重复区顺应于适应性选择。同样,类转座元件在抗病基因座中的插入加速了抗病基因的进化。随着抗病基因的进化,抗病反应也呈现出多样化,代表着植物与病原物动态进化的不同阶段。  相似文献   

2.
This article reviews recent advances that shed light on plant disease resistance genes, beginning with a brief overview of their structure, followed by their genomic organization and evolution. Plant disease resistance genes have been exhaustively investigated in terms of their structural organization, sequence evolution and genome distribution. There are probably hundreds of NBS-LRR sequences and other types of R-gene-like sequences within a typical plant genome. Recent studies revealed positive selection and selective maintenance of variation in plant resistance and defence-related genes. Plant resistance genes are highly polymorphic and have diverse recognition specificities. R-genes occur as members of clustered gene families that have evolved through duplication and diversification. These genes appear to evolve more rapidly than other regions of the genome, and domains such as the leucine-rich repeat, are subject to adaptive selection  相似文献   

3.
Plant resistance (R) genes tend to be highly variable within plant species and are thought to be under natural selection; however, little is known about the geographic distribution of R gene diversity within and among plant populations. To determine the possible roles of demography and selection on R gene evolution, patterns of diversity at the multigenic Cf-2 R gene family were studied in Solanum pimpinellifolium populations along the northern coast of Peru. Population diversity levels of Cf-2 homologs follow a latitudinal cline, consistent with the species's history of gradual colonization of the Peruvian coast and population variation in outcrossing levels. Although previous evidence suggests that selection has shaped the DNA sequence content of the Cf-2 genes, current results imply that the geographic distribution of Cf-2 homolog diversity has been shaped primarily by demographic factors or by selective pressures with a clinal distribution.  相似文献   

4.
The evolution of disease resistance genes   总被引:18,自引:0,他引:18  
Several common themes have shaped the evolution of plant disease resistance genes. These include duplication events of progenitor resistance genes and further expansion to create clustered gene families. Variation can arise from both intragenic and intergenic recombination and gene conversion. Recombination has also been implicated in the generation of novel resistance specificities. Resistance gene clusters appear to evolve more rapidly than other regions of the genome. In addition, domains believed to be involved in recognitional specificity, such as the leucine-rich repeat (LRR), are subject to adaptive selection. Transposable elements have been associated with some resistance gene clusters, and may generate further variation at these complexes.  相似文献   

5.
Roux F  Camilleri C  Giancola S  Brunel D  Reboud X 《Genetics》2005,171(3):1277-1288
The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction). Dominance coefficients of the herbicide resistance cost ranged from partial dominance to underdominance, with a mean dominance coefficient of 0.07. It was suggested that the csr1-1, ixr1-2, and axr1-3 resistance alleles are nearly fully recessive for the fitness cost. More interestingly, the dominance of a specific resistance gene in the absence of herbicide varied according to, first, the presence of the other resistance genes and, second, the quantitative trait analyzed. These results and their implications for multiresistance evolution are discussed in relation to the maintenance of polymorphism at resistance loci in a heterogeneous environment.  相似文献   

6.
The nucleotide-binding site-leucine-rich repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. We cloned the NBS-LRR-encoding genes from polyploid cotton by a polymerase chain reaction-based approach. A sample of 150 clones was selected from the NBS-LRR gene sequence library and was sequenced, and 61 resistance gene analogs (RGA) were identified. Sequence analysis revealed that RGA are abundant and highly diverged in the cotton genome and could be categorized into 10 distinct subfamilies based on the similarities of their nucleotide sequences. The numbers of members vary many fold among different subfamilies, and gene index analysis showed that each of the subfamilies is at a different stage of RGA family evolution. Genetic mapping of a selection of RGA indicates that the RGA reside on a limited number of the cotton chromosomes, with those from a single subfamily tending to cluster and two of the RGA loci being colocalized with the cotton bacterial blight resistance genes. The distribution of RGA between the two subgenomes A and D of cotton is uneven, with RGA being more abundant in the A subgenome than in the D subgenome. The data provide new insights into the organization and evolution of the NBS-LRR-encoding RGA family in polyploid plants.  相似文献   

7.
高远    田李  秦松 《植物学报》2008,25(4):401-406
正选择是指将因含有有利突变而提高个体适合度的等位基因固定下来的选择作用, 研究正选择对理解生物进化过程具有重要意义。本文回顾了近年来在植物基因中发现的正选择作用, 分别对陆生植物和藻类中经历正选择作用的基因进行了总结, 其中在陆生植物中发现的正选择位点主要集中在与生殖相关及与抗逆相关的基因上, 这为以后对植物中正选择作用的研究提供了线索。  相似文献   

8.
Plants are under strong evolutionary pressure in developing new and noble R genes to recognize pathogen avirulence (avr) determinants and bring about stable defense for generation after generations. Duplication, sequence variation by mutation, disparity in the length and structure of leucine rich repeats etc., causes tremendous variations within and among R genes in a plant thereby developing diverse recognitional specificity suitable enough for defense against new pathogens. Recent studies on genome sequencing, diversity and population genetics in different plants have thrown new insights on the molecular evolution of these genes. Tandem and segmental duplication are important factors in R gene abundance as inferred from the distribution of major nucleotide binding site-leucine rich repeats (NBS-LRRs) type R-genes in plant genomes. Likewise, R-gene evolution is also thought to be facilitated by cluster formation thereby causing recombination and sequence exchange and resulting in haplotypic diversity. Population studies have further proven that balancing selection is responsible for the maintenance of allelic diversity in R genes. In this review, we emphasize and discuss on improved perspectives towards the molecular mechanisms and selection pressure responsible for the evolution of NBS-LRR class resistance genes in plants.  相似文献   

9.
Recently, a number of disease-resistance genes related to a diverse range of pathogens were isolated from a wide variety of plant species. The majority of plant disease-resistance genes encoded a nucleotide-binding site (NBS) domain. According to the comparisons of the NBS domain of cloned R -genes, it has shown highly conserved amino acid motifs in this structure, which made it possible to isolate resistance gene analogs (RGAs) by PCR using degenerate primers. We have designed three pairs of degenerate primers based on two conserved motifs in the NBS domain of resistance proteins encoded by R -genes to amplify genomic sequences from ryegrass ( Lolium sp.). Sixteen NBS-like RGAs were isolated from turf and forage type grasses. The sequence analysis of these RGAs revealed that there existed a high similarity (up to 85%) between RGA sequences among ryegrass species and other plants. The alignment of the predicted amino acid sequences of RGAs showed that ryegrass RGAs contained four conserved motifs (P-Loop, kinase-2, kinase-3a, GLPL) present in other known plant NBS-leucine rich repeat resistance genes. These ryegrass RGAs all belonged to non-toll and interleukin-1 receptor subclass. Phylogenetic analysis of ryegrass RGAs and other cloned R -genes indicated that gene mutation was the predominant source of gene variations, and the sequence polymorphism was due to purifying selection rather than diversifying selection. We further analyzed the source of gene variation in other monocots, rice, barley, wheat, and maize based on the data published before. Our analysis indicated that the source of RGA diversity in these monocots was the same as in ryegrass. Thus, monocots were probably the same as dicots in the source of RGA diversity. Ryegrass RGAs in the present paper represented a large group of resistance gene homologs in monocots. We discussed the origin and the evolution of R -genes in grass species.  相似文献   

10.
Codon bias is generally thought to be determined by a balance between mutation, genetic drift, and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. In this paper, I study associations between codon usage, gene expression, and molecular evolution at synonymous and nonsynonymous sites in the long-lived, woody perennial plant Populus tremula (Salicaceae). Using expression data for 558 genes derived from expressed sequence tags (EST) libraries from 19 different tissues and developmental stages, I study how gene expression levels within single tissues as well as across tissues affect codon usage and rates sequence evolution at synonymous and nonsynonymous sites. I show that gene expression have direct effects on both codon usage and the level of selective constraint of proteins in P. tremula, although in different ways. Codon usage genes is primarily determined by how highly expressed a genes is, whereas rates of sequence evolution are primarily determined by how widely expressed genes are. In addition to the effects of gene expression, protein length appear to be an important factor influencing virtually all aspects of molecular evolution in P. tremula.  相似文献   

11.
From Guard to Decoy: a new model for perception of plant pathogen effectors   总被引:12,自引:0,他引:12  
The Guard Model for disease resistance postulates that plant resistance proteins act by monitoring (guarding) the target of their corresponding pathogen effector. We posit, however, that guarded effector targets are evolutionarily unstable in plant populations polymorphic for resistance (R) genes. Depending on the absence or presence of the R gene, guarded effector targets are subject to opposing selection forces (1) to evade manipulation by effectors (weaker interaction) and (2) to improve perception of effectors (stronger interaction). Duplication of the effector target gene or independent evolution of a target mimic could relax evolutionary constraints and result in a decoy that would be solely involved in effector perception. There is growing support for this Decoy Model from four diverse cases of effector perception involving Pto, Bs3, RCR3, and RIN4. We discuss the differences between the Guard and Decoy Models and their variants, hypothesize how decoys might have evolved, and suggest ways to challenge the Decoy Model.  相似文献   

12.
Evolutionary dynamics of pathogen resistance and tolerance   总被引:18,自引:0,他引:18  
Abstract.— Host organisms can respond to the threat of disease either through resistance defenses (which inhibit or limit infection) or through tolerance strategies (which do not limit infection, but reduce or offset its fitness consequences). Here we show that resistance and tolerance can have fundamentally different evolutionary outcomes, even when they have equivalent short-term benefit for the host. As a gene conferring disease resistance spreads through a population, the incidence of infection declines, reducing the fitness advantage of carrying the resistance gene. Thus genes conferring complete resistance cannot become fixed (i.e., universal) by selection in a host population, and diseases cannot be eliminated solely by natural selection for host resistance. By contrast, as a gene conferring disease tolerance spreads through a population, disease incidence rises, increasing the evolutionary advantage of carrying the tolerance gene. Therefore, any tolerance gene that can invade a host population will tend to be driven to fixation by selection. As predicted, field studies of diverse plant species infected by rust fungi confirm that resistance traits tend to be polymorphic and tolerance traits tend to be fixed. These observations suggest a new mechanism for the evolution of mutualism from parasitism, and they help to explain the ubiquity of disease.  相似文献   

13.
Pathogens are a main driving force of the evolution of plants and animals. Being resistant to diseases confers a high selective advantage to hosts, yet many host–pathogen systems show a remarkable degree of polymorphism of host resistance and pathogen virulence. The most common explanation of this phenomenon is that both resistance and virulence genes are costly and that there is selection against those genes when they are unnecessary. Here, we use stochastic multi‐locus simulations to show that the origin and the maintenance of genetic polymorphism in plant–pathogen systems can be explained without costs. In multi‐locus gene‐for‐gene systems, temporal domination of a super pathogen can cause polymorphism in resistance through neutral drift. With an increasing number of susceptible alleles in the host population, pathogen types other than the super race are able to cause infections and invade the population, leading to higher pathogen diversity and in turn to higher host diversity.  相似文献   

14.
The codon usage of the Angiosperm psbA gene is atypical for flowering plant chloroplast genes but similar to the codon usage observed in highly expressed plastid genes from some other Plantae, particularly Chlorobionta, lineages. The pattern of codon bias in these genes is suggestive of selection for a set of translationally optimal codons but the degree of bias towards these optimal codons is much weaker in the flowering plant psbA gene than in high expression plastid genes from lineages such as certain green algal groups. Two scenarios have been proposed to explain these observations. One is that the flowering plant psbA gene is currently under weak selective constraints for translation efficiency, the other is that there are no current selective constraints and we are observing the remnants of an ancestral codon adaptation that is decaying under mutational pressure. We test these two models using simulations studies that incorporate the context-dependent mutational properties of plant chloroplast DNA. We first reconstruct ancestral sequences and then simulate their evolution in the absence of selection on codon usage by using mutation dynamics estimated from intergenic regions. The results show that psbA has a significantly higher level of codon adaptation than expected while other chloroplast genes are within the range predicted by the simulations. These results suggest that there have been selective constraints on the codon usage of the flowering plant psbA gene during Angiosperm evolution.  相似文献   

15.
This review describes different approaches to employment of new marker genes in selection of transformed plant cells, which are based on the use of mutant tubulin genes from natural plant biotypes and, in prospect, induced plant mutants. The results of studies of plant (biotypes, mutants) resistance to herbicides with antimicrotubular mode of action at molecular and cellular levels were summarized. The reports on the transfer and expression of mutant tubulin genes conferring resistance to amiprophosmethyl (phosphorothioamidate herbicide) and trifluralin (dinitroaniline herbicide) from corresponding Nicotiana plumbaginifolia mutants in related and remote plant species by somatic hybridization methods were analyzed. The results of experiments on transformation of monocotyledonous and dicotyledonous plants by mutant α-tubulin gene conferring resistance to dinitroanilines are described to test the possibility of its use as a marker gene and simultaneously obtaining dinitroaniline-resistant plants.  相似文献   

16.
The majority of plant disease resistance genes are members of very large multigene families. They encode structurally related proteins containing nucleotide binding site domains (NBS) and C-terminal leucine rich repeats (LRR). The N-terminal region of some resistance genes contain a short sequence called TIR with homology to the animal innate immunity factors, Toll and interleukin receptor-like genes. Only a few plant resistance genes have been functionally analyzed and the origin and evolution of plant resistance genes remain obscure. We have reconstructed gene phylogeny by exhaustive analysis of available genome and amplified NBS domain sequences. Our study shows that NBS domains faithfully predict whole gene structure and can be divided into two major groups. Group I NBS domains contain group-specific motifs that are always linked with the TIR sequence in the N terminus. Significantly, Group I NBS domains and their associated TIR domains are widely distributed in dicot species but were not detected in cereal databases. Furthermore, Group I specific NBS sequences were readily amplified from dicot genomic DNA but could not be amplified from cereal genomic DNA. In contrast, Group II NBS domains are always associated with putative coiled-coil domains in their N terminus and appear to be present throughout the angiosperms. These results suggest that the two main groups of resistance genes underwent divergent evolution in cereal and dicot genomes and imply that their cognate signaling pathways have diverged as well. Received: 17 May 1999 / Accepted: 25 September 1999  相似文献   

17.
The approaches for new marker genes usage in selection of transformed plant cells, which are based on using mutant tubulin genes from natural plant biotypes and, in perspective, from induced plant mutants have been considered. The results of investigations of plant (biotypes, mutants) resistance to herbicides with antimicrotubular mode of action on molecular and cellular levels have been summarized. The reports dealing with study the transferring and the expression of mutant tubulin genes conferring resistance to amiprophosmethyl (phosphorothioamidate herbicide) and to trifluralin (dinitroaniline herbicide) from corresponding N. plumbaginifolia mutants into related and remote plant species by somatic hybridisation methods have been analyzed. The results of experiments on monocotyledonous and dicotyledonous. plant transformation by mutant alpha-tubulin gene conferring resistance to dinitroanilines are described to test the possibility of its using as a marker gene with obtaining, at the same time, a dinitroaniline-resistant plants.  相似文献   

18.
We sampled 384 sequences related to the Solanum pimpinellifolium (=Lycopersicon pimpinellifolium) disease resistance (R) gene 12 from six species, potato, S. demissum, tomato, eggplant, pepper, and tobacco. These species represent increasing phylogenetic distance from potato to tobacco, within the family Solanaceae. Using sequence data from the nucleotide binding site (NBS) region of this gene, we tested models of gene family evolution and inferred patterns of selection acting on the NBS gene region and I2 gene family. We find that the I2 family has diversified within the family Solanaceae for at least 14 million years and evolves through a slow birth-and-death process requiring approximately 12 million years to homogenize gene copies within a species. Analyses of selection resolved a general pattern of strong purifying selection acting on individual codon positions within the NBS and on NBS lineages through time. Surprisingly, we find nine codon positions strongly affected by positive selection and six pairs of codon positions demonstrating correlated amino acid substitutions. Evolutionary analyses serve as bioinformatic tools with which to sort through the vast R gene diversity in plants and find candidates for new resistance specificities or to identify specific amino acid positions important for biochemical function. The slow birth-and-death evolution of I2 genes suggests that some NBS-leucine rich repeat-mediated resistances may not be overcome rapidly by virulence evolution and that the natural diversity of R genes is a potentially valuable source for durable resistance.  相似文献   

19.
Rohmer L  Guttman DS  Dangl JL 《Genetics》2004,167(3):1341-1360
Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requirement for conservation of virulence function, the avoidance of host defenses, and possible adaptation to new hosts. To understand the evolutionary history of type III effectors in Pseudomonas syringae, we searched for homologs to 44 known or candidate P. syringae type III effectors and two effector chaperones. We examined 24 gene families for distribution among bacterial species, amino acid sequence diversity, and features indicative of horizontal transfer. We assessed the role of diversifying and purifying selection in the evolution of these gene families. While some P. syringae type III effectors were acquired recently, others have evolved predominantly by descent. The majority of codons in most of these genes were subjected to purifying selection, suggesting selective pressure to maintain presumed virulence function. However, members of 7 families had domains subject to diversifying selection.  相似文献   

20.
Genetic mapping and sequencing of plant genomes have been useful for investigating eukaryotic chromosome structural organization. In many cases, analyses have been limited in the number of representatives sampled from specific groups. The degree of intraspecific genome diversity remains in question. The possibility exists that a single model genome may have limited utility for identifying genes in related members of the species or genus. Crop improvement programs have particular interests in disease resistance genes that are harbored by wild relatives of modern cultivated crops. These genes are evolutionarily dynamic and under selective pressure by a broad range of pathogenic organisms. Using resistance gene analogs as models for gene evolution, intraspecific genome comparisons were made among populations of wild diploid wheat (Aegilops tauschii). We observed that deletion haplotypes are occurring frequently and independently in the genome. Haplotypes are geographically correlated and maintenance of gene complements in localized populations indicates selective advantage. Furthermore, deletion haplotypes are not detrimental to plant health, since genes without adaptive value in alternate environments are eliminated from the genome. Deletion haplotypes appear to be a common form of allelic variation in plants, and we address the consequences on genome restructuring and gene evolution. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号