首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
The response of superoxide dismutases (SOD, EC1.15.1.1) to chilling-induced oxidative stress in differentially sensitive maize genotypes ( Zea mays L) was examined. A native 2D-PAGE system that resolves the maize leaf SOD isoforms has been developed. The chloroplastic SOD activity was resolved into four Cu/Zn SOD isoforms designated SOD1a→d with pI values of 3.9, 4.0, 4.5 and 5.6, respectively. These SODs are located in the stroma and display a higher resistance to hydrogen peroxide inactivation than the cytosol Cu/ZnSODs. They operate as 32 kDa homodimers and have an AT motif at the NH2-terminal, which characterizes the chloroplastic SODs of most species. A light chilling treatment resulted in a rapid increase in the activity of SOD1a and SOD1b. Because this increase was observed in the presence of the protein synthesis inhibitor cycloheximide, it is suggested that short-term regulation of chloroplastic SODs occurs at a post-translational level.  相似文献   

7.
This study assesses whether the phylogenetic relationships between SODs from different organisms could assist in elucidating the functional relationships among these enzymes from evolutionarily distinct species. Phylogenetic trees and intron positions were compared to determine the relationships among these enzymes. Alignment of Cu/ZnSOD amino acid sequences indicates high homology among plant sequences, with some features that distinguish chloroplastic from cytosolic Cu/ZnSODs. Among eukaryotes, the plant SODs group together. Alignment of the Mn and FeSOD amino acid sequences indicates a higher degree of homology within the group of MnSODs (>70%) than within FeSODs (approximately 60%). Tree topologies are similar and reflect the taxonomic classification of the corresponding species. Intron number and position in the Cu/Zn Sod genes are highly conserved in plants. Genes encoding cytosolic SODs have seven introns and genes encoding chloroplastic SODs have eight introns, except the chloroplastic maize Sod1, which has seven. In Mn Sod genes the number and position of introns are highly conserved among plant species, but not among nonplant species. The link between the phylogenetic relationships and SOD functions remains unclear. Our findings suggest that the 5' region of these genes played a pivotal role in the evolution of function of these enzymes. Nevertheless, the system of SODs is highly structured and it is critical to understand the physiological differences between the SODs in response to different stresses in order to compare their functions and evolutionary history.  相似文献   

8.
A cDNA clone for the cytosolic Cu/Zn superoxide dismutase (Cu/Zn SOD) from Chinese cabbage (Brassica campestris ssp.pekinensis) was isolated and its DNA sequence was determined. The cDNA clone contains a complete coding sequence which encodes a protein of 152 amino acids and a 3-untranslated region including a poly A signal. The deduced amino acid sequence shows that it is highly homologous to the Cu/Zn SODs from other plants (60–90%). The lack of a putative chloroplast targeting transit peptide indicates that the clone represents a cytosolic form of Cu/Zn SOD. Genomic Southern hybridization suggests that cytosolic Cu/Zn SOD genes are present in 1 or 2 copies per genome.  相似文献   

9.
Thirty-two barrows (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which included eight pigs. The groups received the same basal diet supplemented with 0, 100, 250 and 400mg/kg fluoride, respectively. The malondialdehyde (MDA) and glutathione (GSH) levels, antioxidant enzymes activities and zinc/copper superoxide dismutase (Cu/Zn SOD) mRNA content in the liver were determined to evaluate the fluoride hepatic intoxication. Results showed the increased lipid peroxides (LPO) level and the reduced GSH content, along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px). Moreover, the level of hepatic Cu/Zn SOD mRNA was also significantly reduced. We suggest the mechanism of fluoride injuring the liver as follows: fluoride causes a decrease in Cu/Zn SOD mRNA and the reduced activities of antioxidant enzymes, leads to the declined ability of scavenging free radicals with excessive production of LPO, which seriously damages the hepatic structure and function.  相似文献   

10.
11.
A new chloroplastic Cu/Zn-superoxide dismutase (SOD) isoenzyme was identified in Arabidopsis thaliana ecotype Cvi. Genetic analyses indicated that the new isoenzyme was encoded by a Cvi-specific allele of Csd2 that was named Csd2-2. Paraquat treatments of A. thaliana ecotypes Ler and Cvi resulted in higher levels of chloroplastic Cu/Zn-SOD activity in Cvi, suggesting that the Cvi isoenzyme has a higher stability and/or turnover rate than the Ler variant under photo-oxidative conditions. In addition, Cvi showed a higher tolerance to paraquat treatments. Hybrid plant populations expressing Csd2-2 also exhibited an increased tolerance, suggesting that the Cvi isoenzyme is one of the factors that contribute to a better fitness in photo-oxidative stress conditions.  相似文献   

12.
Copper chaperone is an essential cytosolic factor that maintains copper homeostasis in living cells. Cytosolic metallochaperones have been recently identified in plant, yeast, rodents, and human cells. During our investigation, we found a new member of the copper chaperone family for copper/zinc superoxide dismutase, which was cloned from rats. The new copper chaperone was named rCCS (rat Copper Chaperone for Superoxide dismutase). The cDNA of rCCS was found to have a length of 1094 bp, and the protein analyzed from the cDNA was deduced to contain 274 amino acids. The amino acid sequence of rCCS consists of three domains: A metal binding domain, which has a MXCXXC motif in domain I, a homolog of the Cu/Zn SOD in domain II, and a CXC motif in domain III. The binding of rCCS to Cu/Zn SOD was analyzed by GST column binding assay, and the domain II of rCCS was found to be essential for binding to Cu/Zn SOD, which in turn activates Cu/Zn SOD.  相似文献   

13.
14.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN?-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

15.
Mature Pinus sylvestris trees were exposed to air-pollution strees in an open field fumigation experiment. The trees were exposed to low-levels of sulphur dioxide and nitrogen oxides throughout the whole growing season (June to October 1991). Three age-classes (current, one- and two-year-old) of needles were collected from exposed and control trees and the expression of chloroplastic and cytosolic CuZn-superoxide dismutase (SOD; EC 1.15.1.1) genes was studied. The levels of chloroplastic and cytosolic CuZn-SOD mRNA were significantly (up to 2.3-fold) higher in exposed trees for all age-classes of needles as compared to control trees. No significant differences were observed between different needle age-classes in CuZn-SOD mRNA induction. The chloroplastic and cytosolic CuZn-SOD mRNA were induced to the same extent, however, the level of chloroplastic CuZn-SOD mRNA was higher than the cytosolic one. Small differences were observed in CuZn-SOD mRNA levels for individual trees both within exposed and control areas. Protein activity measurements of the CuZn-SOD isozymes did not reveal any significant differences between control and exposed trees. The results are discussed in relation to protection against oxidant stress from air pollutants.  相似文献   

16.
17.
Chenopodium murale is a weed species having wide adaptation to different climatic regimes and experiences a temperature range of 5-45 degrees C during its life span. Higher temperatures may result in heat stress, which induces higher ROS production leading to oxidative stress in the plant. Superoxide dismutase enzyme (SOD, EC.1.15.1.1) is ubiquitous, being widely distributed among O(2)(-) consuming organisms and is the first line of defense against oxidative stress. In this study, we have characterized the thermostability of the SOD isozymes from C. murale in vitro. The leaf protein extracts, thylakoidal and stromal fractions were subjected to elevated temperatures ranging from 50 degrees C to boiling and analyzed for activity and isoform pattern of SOD. Out of six SOD isoforms, SOD V showed stability even after boiling the extract for 10min. Under high temperature treatment (>60 degrees C) there was an appearance of a new SOD band with higher electrophoretic mobility. The inhibitor studies and subcellular analysis revealed that the SOD V isoform was a chloroplastic Cu/Zn SOD. The stromal Cu/Zn SOD (SOD V) was more stable than the co-migrating thylakoidal isozyme at 80 degrees C and boiling for 10min. Hence, we report an unusual, constitutive thermostable chloroplastic Cu/Zn SOD from C. murale, which may contribute towards its heat tolerance.  相似文献   

18.
19.
20.
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号