首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Cellular hypoxia response is regulated at the level of hypoxia-inducible factor (HIF) activity. A number of recently identified oxygen sensors are HIF-modifying enzymes that respond to low oxygen by altering HIF modification and thus lead to its activation. In addition to the HIF proline hydroxylases and asparagine hydroxylases, ARD1 is recently described as a HIF-1alpha acetylase that regulates its stability. We found that ARD1 is down-regulated in a number of cell lines in response to hypoxia and hypoxia mimic compounds. After surveying these lines for erythropoietin production and retroviral transfection efficiency, we chose to use HepG2 cells to study the function of ARD1. ARD1 short hairpin RNA delivered by a retroviral vector caused >80% reduction in ARD1 message. We observed decreases in erythropoietin and vascular endothelial growth factor protein production, whereas there was no change in the HIF-1alpha protein level. A gene chip analysis of HepG2 cells transduced with virus expressing ARD1 short hairpin RNA under normoxia and hypoxia conditions or with virus overexpressing recombinant ARD1 confirmed that inhibition of ARD1 does not cause activation of HIF and downstream target genes. However, this analysis revealed that ARD1 is involved in cell proliferation and in regulating a series of cellular metabolic pathways that are regulated during hypoxia response. The role of ARD1 in cell proliferation is confirmed using fluorescence labeling analysis of cell division. From these studies we conclude that ARD1 is not required to suppress HIF but is required to maintain cell proliferation in mammalian cells.  相似文献   

13.
The hypoxia-inducible factor (HIF) is a master regulator of the cellular response to hypoxia. Its levels and activity are controlled by dioxygenases called prolyl-hydroxylases and factor inhibiting HIF (FIH). To activate genes, HIF has to access sequences in DNA that are integrated in chromatin. It is known that the chromatin-remodeling complex switch/sucrose nonfermentable (SWI/SNF) is essential for HIF activity. However, no additional information exists about the role of other chromatin-remodeling enzymes in hypoxia. Here we describe the role of imitation switch (ISWI) in the cellular response to hypoxia. We find that unlike SWI/SNF, ISWI depletion enhances HIF activity without altering its levels. Furthermore, ISWI knockdown only alters a subset of HIF target genes. Mechanistically, we find that ISWI is required for full expression of FIH mRNA and protein levels by changing RNA polymerase II loading to the FIH promoter. Of interest, exogenous FIH can rescue the ISWI-mediated upregulation of CA9 but not BNIP3, suggesting that FIH-independent mechanisms are also involved. Of importance, ISWI depletion alters the cellular response to hypoxia by reducing autophagy and increasing apoptosis. These results demonstrate a novel role for ISWI as a survival factor during the cellular response to hypoxia.  相似文献   

14.
15.
Hypoxia-induced multidrug resistance 1 (MDR1) gene expression is known to be mediated by c-Jun NH(2)-terminal kinase (JNK) activation. However, the molecular mechanisms underlying this action of JNK remain elusive. On the contrary, there has been increasing evidence for a negative correlation of JNK activity with MDR1 expression under normoxic conditions. Here, we present evidence that the JNK pathway represses MDR1 expression in normoxia and activates MDR1 expression in hypoxia. Our data show that JNK pathway-induced MDR1 repression in normoxia is mediated by increased c-Jun binding to activator protein 1 site, located in the MDR1 promoter, and requires the activity of histone deacetylase 5. In contrast, JNK pathway-induced MDR1 activation in hypoxia is independent of the activator protein 1 site. Rather, this action is dependent on increased hypoxia-inducible factor 1 (HIF1) binding to the hypoxia response element in the MDR1 promoter, which is promoted by the interaction of HIF1alpha with c-Jun in the nucleus and requires the activity of the p300/CBP (CREB-binding protein) coactivator.  相似文献   

16.
17.
18.
Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors   总被引:13,自引:0,他引:13  
Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation.  相似文献   

19.
HIF1 and HIF2 are major mediators for hypoxia sensing and response. Their roles in early differentiation of two key cell types involved in oxygen supply in amniotes, the primitive blood cells and endothelial cells, are unclear. We show that, in pre-circulation avian embryos, hif1alpha and hif2alpha are expressed in embryonic and extraembryonic tissues, respectively. hif2alpha, first identified as epas1, is not present in endothelial cells at any pre-circulation stage under either normoxia or hypoxia conditions. Differentiating blood cells express low levels of hif2alpha under normoxia, but show a strong and rapid upregulation under hypoxia. Blood cell differentiation, however, is not affected under either hypoxia or hyperoxia conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号