首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
2.
Microbial and biochemical basis of a Fusarium wilt-suppressive soil   总被引:1,自引:0,他引:1  
Crops lack genetic resistance to most necrotrophic pathogens. To compensate for this disadvantage, plants recruit antagonistic members of the soil microbiome to defend their roots against pathogens and other pests. The best examples of this microbially based defense of roots are observed in disease-suppressive soils in which suppressiveness is induced by continuously growing crops that are susceptible to a pathogen, but the molecular basis of most is poorly understood. Here we report the microbial characterization of a Korean soil with specific suppressiveness to Fusarium wilt of strawberry. In this soil, an attack on strawberry roots by Fusarium oxysporum results in a response by microbial defenders, of which members of the Actinobacteria appear to have a key role. We also identify Streptomyces genes responsible for the ribosomal synthesis of a novel heat-stable antifungal thiopeptide antibiotic inhibitory to F. oxysporum and the antibiotic''s mode of action against fungal cell wall biosynthesis. Both classical- and community-oriented approaches were required to dissect this suppressive soil from the field to the molecular level, and the results highlight the role of natural antibiotics as weapons in the microbial warfare in the rhizosphere that is integral to plant health, vigor and development.  相似文献   

3.
4.
《Mycological Research》2006,110(8):929-935
Fusarium wilt of banana is a potentially devastating disease throughout the world. Options for control of the causal organism, Fusarium oxysporum f.sp. cubense (Foc) are limited. Suppressive soil sites have previously been identified where, despite the presence of Foc, Fusarium wilt does not develop. In order to understand some aspects of this disease suppression, endophytic Fusarium oxysporum isolates were obtained from banana roots. These isolates were genetically characterized and compared with an isolate of Fusarium oxysporum previously identified as being capable of suppressing Fusarium wilt of banana in glasshouse trials. Three additional isolates were selected for glasshouse trials to assess suppression of Fusarium wilt in two different cultivars of banana, Cavendish and Lady Finger. One isolate (BRIP 29089) was identified as a potential biocontrol organism, reducing the disease severity of Fusarium wilt in Lady Finger and Cavendish cultivars. Interestingly, one isolate (BRIP 45952) increased Fusarium wilt disease severity on Cavendish. The implications of an isolate of Fusarium oxysporum, non-pathogenic on banana, increasing disease severity and the potential role of non-pathogenic isolates of Fusarium oxysporum in disease complexes are discussed.  相似文献   

5.
The plant hormone, jasmonic acid (JA), is known to have a critical role in both resistance and susceptibility against bacterial and fungal pathogen attack. However, little is known about the involvement of JA in the interactions between plants and toxigenic necrotrophic fungal pathogens. Using the tomato pathotype of Alternaria alternata (Aa) and its AAL-toxin/tomato interaction as a model system, we demonstrate a possible role for JA in susceptibility of plants against pathogens, which utilize host-specific toxins as virulence effectors. Disease development and in planta growth of the tomato pathotype of Aa were decreased in the def1 mutant, defective in biosynthesis of JA, compared with the wild-type (WT) cultivar. Exogenous methyl jasmonate (MeJA) application restored pathogen disease symptoms to the def1 mutant and led to increased disease in the WT. On the other hand, necrotic cell death was similarly induced by AAL-toxin both on def1 and WT, and MeJA application to the tomatoes did not affect the degree of cell death by the toxin. These results indicate that the JA-dependent signaling pathway is not involved in host basal defense responses against the tomato pathotype of Aa, but rather might affect pathogen acceptability via a toxin-independent manner. Data further suggest that JA has a promotional effect on susceptibility of tomato to toxigenic and necrotrophic pathogens, such that pathogens might utilize the JA signaling pathway for successful infection.  相似文献   

6.
7.
The accumulation of hydroxyproline-rich glycoproteins (HRGPs) in cell walls of dicotyledonous plants is thought to be involved in the defense response to pathogens. An antiserum raised against deglycosylated HRGPs from melon was used for studying the subcellular localization of these glycoproteins in susceptible and resistant tomato (Lycopersicon esculentum Mill.) root tissues infected by Fusarium oxysporum f.sp. radicis-lycopersici. A time-course of HRGP accumulation revealed that these glycoproteins increased earlier and to a higher extent in resistant than in susceptible cultivars. In the compatible interaction, increase in HRGPs was largely correlated with pathogen invasion and appeared to occur as a result of wall damage. In the incompatible interaction, HRGPs accumulated in the walls of uninvaded cells, thus indicating a possible role in the protection against fungal penetration. The occurrence of substantial amounts of HRGPs in papillae, known to be physical barriers formed in response to infection, and in intercellular spaces provides additional support to the concept that such glycoproteins play an important role in disease resistance.  相似文献   

8.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

9.
This review will focus on the molecular and genetic mechanisms underlying defense responses of roots to fungal pathogens. Soil-borne pathogens, including Phytophthora, Pythium, Fusarium, and Bipolaris, represent major sources of biotic stress in the rhizosphere and roots of plants. Molecular recognition and signaling leading to effective resistance has been demonstrated to occur between host and Phytophthora, or Pythium. The hypersensitive response and apoptotic cell death, two oxidative processes that limit biotrophic pathogens, generally act to exacerbate disease symptoms induced by necrotrophic organisms. Although pathogenesis-related proteins can be expressed in roots during pathogen challenge, salicylic acid has not been implicated in root-mediated interactions. Jasmonic acid and ethylene have been found to mediate parallel as well as synergistic pathways that confer partial tolerance to necrotrophic pathogens, as well as induced systemic resistance to root and foliar pathogens. Genomics approaches are revealing new networks of defense-signaling pathways, and have the potential of elucidating those pathways that are important in root-defense responses.  相似文献   

10.
Plants face many different concurrent and consecutive abiotic and biotic stresses during their lifetime. Roots can be infected by numerous pathogens and parasitic organisms. Unlike foliar pathogens, root pathogens have not been explored enough to fully understand root-pathogen interactions and the underlying mechanism of defense and resistance. PR gene expression, structural responses, secondary metabolite and root exudate production, as well as the recruitment of plant defense–assisting “soldier” rhizosphere microbes all assist in root defense against pathogens and herbivores. With new high-throughput molecular tools becoming available and more affordable, now is the opportune time to take a deep look below the ground. In this addendum, we focus on soil-borne Fusarium oxysporum as a pathogen and the options plants have to defend themselves against these hard-to-control pathogens.  相似文献   

11.
12.
Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.  相似文献   

13.
The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.  相似文献   

14.
Fusarium oxysporum f. sp. lycopersici (Fol) and Fusarium oxysporum f. sp. cubense (Foc), are the causal agent of Fusarium wilt disease of tomato and banana, respectively, and cause significant yield losses worldwide. A cost-effective measure, such as biological control agents, was used as an alternative method to control these pathogens. Therefore, in this study, six isolates of the Streptomyces-like colony were isolated from soils and their antagonistic activity against phytopathogenic fungi and plant growth-promoting (PGP) activity were assessed. The results showed that these isolates could inhibit the mycelial growth of Fol and Foc. Among them, isolate STRM304 showed the highest percentage of mycelial growth reduction and broad-spectrum antagonistic activity against all tested fungi. In the pot experiment study, the culture filtrate of isolates STRM103 and STRM104 significantly decreased disease severity and symptoms in Fol inoculated plants. Similarly, the culture filtrate of the STRM304 isolate significantly reduced the severity of the disease and symptoms of the disease in Foc inoculated plants. The PGP activity test presents PGP activities, such as indole acetic acid production, phosphate solubilization, starch hydrolysis, lignin hydrolysis, and cellulase activity. Interestingly, the application of the culture filtrate from all isolates increased the percentage of tomato seed germination and stimulated the growth of tomato plants and banana seedlings, increasing the elongation of the shoot and the root and shoot and root weight compared to the control treatment. Therefore, the isolate STRM103 and STRM104, and STRM304 could be used as biocontrol and PGP agents for tomato and banana, respectively, in sustainable agriculture.  相似文献   

15.
Jasmonic acid (JA) is a natural hormone regulator involved in development,responses against wounding and pathogen attack.Upon perception of pathogens,JA is synthesized and mediates a signaling cascade ...  相似文献   

16.
17.
Plant receptor-like kinases (RLKs) are important players in response to pathogen infections. Verticillium and Fusarium wilts, caused by Verticillium dahliae (Vd) and Fusarium oxysporum f. sp vasinfectum (Fov), respectively, are among the most devastating diseases in cotton (Gossypium spp). To understand the cotton response to these soil-borne fungal pathogens, we performed a genome-wide in silico characterization and functional screen of diverse RLKs for their involvement in cotton wilt diseases. We identified Gossypium hirsutum GhWAK7A, a wall-associated kinase, that positively regulates cotton response to both Vd and Fov infections. Chitin, the major constituent of the fungal cell wall, is perceived by lysin-motif-containing RLKs (LYKs/CERK1), leading to the activation of plant defense against fungal pathogens. A conserved chitin sensing and signaling system is present in cotton, including chitin-induced GhLYK5-GhCERK1 dimerization and phosphorylation, and contributes to cotton defense against Vd and Fov. Importantly, GhWAK7A directly interacts with both GhLYK5 and GhCERK1 and promotes chitin-induced GhLYK5-GhCERK1 dimerization. GhWAK7A phosphorylates GhLYK5, which itself does not have kinase activity, but requires phosphorylation for its function. Consequently, GhWAK7A plays a crucial role in chitin-induced responses. Thus, our data reveal GhWAK7A as an important component in cotton response to fungal wilt pathogens by complexing with the chitin receptors.  相似文献   

18.
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.  相似文献   

19.
The strategies used by necrotrophic fungal pathogens to infect plants are often perceived as lacking the sophistication of their haustorium producing, host defence suppressing, biotrophic counterparts. There is also a relative paucity of knowledge regarding how effective gene-for-gene based resistance reactions might function against necrotrophic plant pathogens. However, recent data has emerged from a number of systems which has highlighted that particular species of necrotrophic (and/or hemibiotrophic) fungi, have evolved very sophisticated strategies for plant infection which appear, in fact, to hijack the host resistance responses that are commonly deployed against biotrophs. Both disease resistance (R) protein homologues and mitogen-activated protein kinase (MAPK) cascades commonly associated with incompatible disease resistance responses; appear to be targeted by necrotrophic fungi during compatible disease interactions. These findings highlight an emerging sophistication in the strategies deployed by necrotrophic fungi to infect plants.Key words: Mycosphaerella graminicola, Septoria tritici, Triticum aestivum, mitogen-activated protein kinase, programmed cell death, fungal pathogen, disease resistance, disease susceptibility, toxin  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号