首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Y Sardesai  R Green  P Schimmel 《Biochemistry》1999,38(37):12080-12088
RNA minihelices that recreate the amino acid acceptor domain of the two-domain L-shaped tRNA molecule are substrates for specific aminoacylation by tRNA synthetases. Some lines of evidence suggest that this domain arose independently of and predated the second, anticodon-containing domain. With puromycin and a minihelix charged with alanine, we show here efficient 50S ribosome catalyzed peptide synthesis. The aminoacyl minihelix is as active as aminoacyl tRNA in the synthetic reaction. The high efficiency of the charged minihelix is due to a relatively strong interaction with the 50S particle. In contrast, an aminoacyl RNA fragment that recreates the 3'-side of the tRNA acceptor stem has a much weaker interaction with the 50S particle. These results are consistent with the minihelix domain being the major loci for tRNA interactions with the 50S ribosome. They may also have implications for the historical development of RNA-based systems of peptide synthesis.  相似文献   

2.
Morris, D. W. (University of California, San Diego), and J. A. DeMoss. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 90:1624-1631. 1965.-A leucine auxotroph of Escherichia coli was examined for its rate of ribonucleic acid (RNA) synthesis and the level of charged leucine-, arginine-, and valine-specific transfer RNA (tRNA) during the exponential growth period and when growth was limited by leucine starvation. During the logarithmic growth period, the leucine-specific tRNA was 70% charged, arginine-specific tRNA was 30% charged, and the valine-specific tRNA was 80% charged. When leucine became limiting, RNA synthesis was inhibited and the levels of charged arginine- and valine-specific tRNA remained constant, whereas the level of charged leucine-specific tRNA dropped to 40%. Examination of the leucyl-tRNA during the leucine starvation period showed that this 40% level is maintained by protein turnover. Addition of chloramphenicol or puromycin to a leucine-starved culture derepressed RNA synthesis. In the presence of chloramphenicol, the leucine-specific tRNA was fully charged; however, in the presence of puromycin the amount of charged leucine-specific tRNA remained at the starved level. Therefore, during leucine starvation the level of uncharged leucine-specific tRNA is not invariably correlated with the rate of RNA synthesis. We propose that it is the availability of charged tRNA and not the amount of uncharged tRNA which is the important factor in the amino acid control of RNA synthesis.  相似文献   

3.
4.
By use of a mutant of Escherichia coli with a partially thermolabile transfer ribonucleic acid (tRNA) synthase, it was possible to regulate the rate of RNA synthesis over a 10-fold range. The addition of chloramphenicol to cultures kept at the nonpermissive temperature stimulated RNA synthesis. The longer the culture was kept at the nonpermissive temperature prior to addition of chloramphenicol, the lower was the resulting rate of RNA synthesis. The decrease in the rate of incorporation of labeled uracil into RNA was correlated with the decrease in the level of valyl tRNA. Additional experiments provided evidence which may be interpreted as indicating that valyl tRNA does not, by itself, react with the RNA-forming system.  相似文献   

5.
Unnatural amino acid mutagenesis requires the in vitro production of aminoacyl tRNAs. Bacteriophage T4 RNA ligase is used to ligate a-amino-protected dCA amino acids to 74mer tRNA. Previously, there has been no facile method for evaluating the efficiency of this reaction prior to using the tRNA in translation. We report a novel use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in monitoring the formation of aminoacyl 76mer tRNA. This method is more efficient and precise than the traditional technique of gel electrophoresis. These MALDI conditions should also prove useful for analyzing aminoacyl tRNAs produced through aminoacyl tRNA synthetases and other methods.  相似文献   

6.
Transfer RNA was analyzed qualitatively as well as quantitatively from ovaries of the fresh water teleostHeteropneustes fossilis for twelve months. The tRNA samples were found to be pure and devoid of any high molecular weight RNA or DNA contaminations. The quantity of tRNA as well as its biological activity, assayed byin vitro aminoacylation using homologous aminoacyl tRNA synthetases, were found to be higher during resting and preparatory (pre-vitellogenic) phases, i.e. from November to March, as compared to vitellogenic and spawning phases of the fish, i.e. from April to October. The highest tRNA pool and its activity was found in the month of February, which coincides with the early preparatory phase. The results indicate that the accumulation of active tRNA starts in the resting phase. Such an accumulation of tRNA may be a part of the enrichment of mature eggs with complete translational machinery before ovulation in order to cope with the high rate of protein synthesis after fertilization.Abbreviations aaRS aminoacyl tRNA synthetase - [14C] APH [14C]-algal protein hydrolysate - ATP adenosine triphosphate - DTT dithiothreitol - EDTA ethylene diamine tetra acetic acid - GSI gonado somatic index - TCA trichloroacetic acid - tRNA transfer RNA  相似文献   

7.
A transient increase in protein synthesis was observed in mitochondria at the mesenchyme blastula stage of sea urchin ( Hemicentrotus pulcherrimus ) embryos. This stimulated activity was inhibited by chloramphenicol but not by cycloheximide. Reconstituting experiments in which poly U-dependent protein synthesis was carried out showed the mitochondrial peptide elongation factor to be essential for increasing the protein synthetic activity in mesenchyme blastula, but aminoacyl tRNA synthetase and ribosome fraction containing initiation factor not to be involved in this increase. These findings are discussed in relation to the differentiation of embryos at the gastrulation stage.  相似文献   

8.
Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel(+) strain, it cannot carry out net RNA synthesis at high temperature. A 100-mug amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 mug of CAP or 100 mug of CAP plus 50 mug of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNA(val) at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases.  相似文献   

9.
10.
The 3'-terminal tRNA-like structure in turnip yellow mosaic virus (TYMV) RNA can be adenylated by tRNA nucleotidyltransferase and subsequently aminoacylated by valyl-tRNA synthetase.Here we present evidence that TYMV Val-RNA can form a stable complex with eukaryotic wheat germ elongation factor EF-1alpha and GTP: the Val-RNA is protected by EF-1alpha.. GTP against digestion by RNase A. By affinity chromatography of TYMV Val-RNA fragments on immobilized EF-1alpha . GTP, it has been established that the valylated aminoacyl RNA domain, which in TYMV RNA is formed by the 3' half of the tRNA-like region, is sufficient for complex formation with EF-1alpha . GTP. The aminoacyl RNA domain is equivalent in tRNAs to the continuous helix formed by the acceptor stem and the T stem and loop. In line with these results, the aminoacyl RNA domain in TYMV Val-RNA complexed to EF-1 alpha . GTP is resistant to digestion by RNase A. It is also shown that the TYMV RNA replicase (RNA-dependent RNA polymerase) isolated from TYMV-infected Chinese cabbage leaves does not contain tRNA nucleotidyltransferase, valyl-tRNA synthetase or EF-1alpha. This suggests that interaction of TYMV RNA with EF-1alpha is not mandatory for replicase activity.  相似文献   

11.
12.
Ribosomes translate genetic information encoded by messenger RNAs (mRNAs) into proteins. Accurate decoding by the ribosome depends on the proper interaction between the mRNA codon and the anticodon of transfer RNA (tRNA). tRNAs from all kingdoms of life are enzymatically modified at distinct sites, particularly in and near the anticodon. Yet, the role of these naturally occurring tRNA modifications in translation is not fully understood. Here we show that modified nucleosides at the first, or wobble, position of the anticodon and 3'-adjacent to the anticodon are important for translocation of tRNA from the ribosome's aminoacyl site (A site) to the peptidyl site (P site). Thus, naturally occurring modifications in tRNA contribute functional groups and conformational dynamics that are critical for accurate decoding of mRNA and for translocation to the P site during protein synthesis.  相似文献   

13.
Translocation, the directional movement of transfer RNA (tRNA) and messenger RNA (mRNA) substrates on the ribosome during protein synthesis, is regulated by dynamic processes intrinsic to the translating particle. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging, in combination with site-directed mutagenesis of the ribosome and tRNA substrates, we show that peptidyl-tRNA within the aminoacyl site of the bacterial pretranslocation complex can adopt distinct hybrid tRNA configurations resulting from uncoupled motions of the 3'-CCA terminus and the tRNA body. As expected for an on-path translocation intermediate, the hybrid configuration where both the 3'-CCA end and body of peptidyl-tRNA have moved in the direction of translocation exhibits dramatically enhanced puromycin reactivity, an increase in the rate at which EF-G engages the ribosome, and accelerated rates of translocation. These findings provide compelling evidence that the substrate for EF-G catalyzed translocation is an intermediate wherein the bodies of both tRNA substrates adopt hybrid positions within the translating ribosome.  相似文献   

14.
Centrella M  Porter DL  McCarthy TL 《Gene》2011,482(1-2):15-23
Eukaryotic protein synthesis is a multi-step and highly controlled process that includes an early initiation complex containing eukaryotic initiation factor 2 (eIF2), GTP, and methionine-charged initiator methionyl-tRNA (met-tRNAi). During studies to reconstruct formation of the ternary complex containing these molecules, we detected a potent inhibitor in low molecular mass RNA (sRNA) preparations of eukaryotic tRNA. The ternary complex inhibitor (TCI) was retained in the total sRNA pool after met-tRNAi was charged by aminoacyl tRNA synthetase, co-eluted with sRNA by size exclusion chromatography, but resolved from met-tRNAi by ion exchange chromatography. The adverse effect of TCI was not overcome by high GTP or magnesium omission and was independent of GTP regeneration. Rather, TCI suppressed the rate of ternary complex formation, and disrupted protein synthesis and the accumulation of heavy polymeric ribosomes in reticulocyte lysates in vitro. Lastly, a component or components in ribosome depleted cell lysate significantly reversed TCI activity. Since assembly of the met-tRNAi/eIF2/GTP ternary complex is integral to protein synthesis, awareness of TCI is important to avoid confusion in studies of translation initiation. A clear definition of TCI may also allow a better appreciation of physiologic or pathologic situations, factors, and events that control protein synthesis in vivo.  相似文献   

15.
In 10B601 (rel+) strain possessing a temperature-sensitive valyl-tRNA synthetase, chloramphenicol prevented the formation of guanosine-3'-diphosphate-5'-diphosphate (ppGpp) as well as the stringent control of stable RNA synthesis, under the conditions where the incorporation of valine into protein was still detectable i.e. at the lower restrictive temperatures. On the other hand, the effect of chloramphenicol was not observed at higher restrictive temperatures above 42 degrees C where the incorporation of valine was completely absent. Pretreatment of 10B601 cells with chloramphenicol before transfer to a high restrictive temperature (43.5 degrees C) did retard the onset of accumulation of ppGpp after the shift-up. Duration of the lag period was dependent on the concentration of chloramphenicol added. In parallel with the inability of the cells to accumulate ppGpp, stable RNA synthesis was permitted to continue at that high temperature. These results suggest that chloramphenicol traps aminoacyl-tRNA at the A-sites of ribosomes by damming-up the small flow of aminoacyl-tRNA under the restrictive supply of amino acids. Unchanged tRNA which has been located at the A-site is replaced by the charged one, thus resulting in the suppression of ppGpp formation and in the restoration of stable RNA synthesis.  相似文献   

16.
Formation of the chlorophyll and heme precursor δ-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond formation. Our results suggest that the RNA that is required for ALA formation may be functionally distinct from the glutamyl-tRNA species involved in protein synthesis.  相似文献   

17.
Experiments were conducted to investigate structural features of the aminoacyl stem region of precursor histidine tRNA critical for the proper cleavage by the catalytic RNA component of RNase P that is responsible for 5' maturation. Histidine tRNA was chosen for study because tRNAHis has an 8 base pair instead of the typical 7-base pair aminoacyl stem. The importance of the 3' proximal CCA sequence in the 5'-processing reaction was also investigated. Our results show that the tRNAHis precursor patterned after the natural Bacillus subtilis gene is cleaved by catalytic RNAs from B. subtilis or Escherichia coli, leaving an extra G residue at the 5'-end of the aminoacyl stem. Replacing the 3' proximal CCA sequence in the substrate still allowed the catalytic RNA to cleave at the proper position, but it increased the Km of the reaction. Changing the sequence of the 3' leader region to increase the length of the aminoacyl stem did not alter the cleavage site but reduced the reaction rate. However, replacing the G residue at the expected 5' mature end by an A changed the processing site, resulting in the creation of a 7-base pair aminoacyl stem. The Km of this reaction was not substantially altered. These experiments indicate that the extra 5' G residue in B. subtilis tRNAHis is left on by RNase P processing because of the precursor's structure at the aminoacyl stem and that the cleavage site can be altered by a single base change. We have also shown that the catalytic RNA alone from either B. subtilis or E. coli is capable of cleaving a precursor tRNA in which the 3' proximal CCA sequence is replaced by other nucleotides.  相似文献   

18.
eIF3j is located in the decoding center of the human 40S ribosomal subunit   总被引:1,自引:0,他引:1  
Protein synthesis in all cells begins with the ordered binding of the small ribosomal subunit to messenger RNA (mRNA) and transfer RNA (tRNA). In eukaryotes, translation initiation factor 3 (eIF3) is thought to play an essential role in this process by influencing mRNA and tRNA binding through indirect interactions on the backside of the 40S subunit. Here we show by directed hydroxyl radical probing that the human eIF3 subunit eIF3j binds to the aminoacyl (A) site and mRNA entry channel of the 40S subunit, placing eIF3j directly in the ribosomal decoding center. eIF3j also interacts with eIF1A and reduces 40S subunit affinity for mRNA. A high affinity for mRNA is restored upon recruitment of initiator tRNA, even though eIF3j remains in the mRNA-binding cleft in the presence of tRNA. These results suggest that eIF3j functions in part by regulating access of the mRNA-binding cleft in response to initiation factor binding.  相似文献   

19.
20.
A protein factor TFms) that is required for ppGpp to stimulate RNA synthesis has been purified from an eluate of crude ribosomes. TFms also has the capacity to stimulate RNA synthesis without ppGpp present. Under standard conditions the action TFms and ppGpp requires uncharged tRNA. TFms and ppGpp act at inhibition to promote the formation of rifampicin-resistant or polytrI)-resistant preinitiation complexes. In the presence of rifampicin or poly(rI), tRNA is no longer required. With lambdah80dlacPs DNA as template, ppGpp together with TFms stimulated gal RNA synthesis to a much greater extent than total RNA synthesis. The stimulation of both lac and gel RNA synthesis was increased in the presence of cyclic AMP receptor and cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号