首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial metabolism of nitroarenes via o-aminophenols requires the participation of two key enzymes, a nitroreductase and an hydroxylaminobenzene mutase. The broad substrate ranges of the enzymes suggested that they could be used as biocatalysts for the production of substituted o-aminophenols. We have used enzymes from Pseudomonas pseudoalcaligenes JS45 for the conversion of 4-nitrobiphenyl ether to the corresponding o-aminophenol. Partially purified nitrobenzene nitroreductase reduced 4-nitrobiphenyl ether to the corresponding 4-hydroxylaminobiphenyl ether. Partially purified hydroxylaminobenzene mutase stoichiometrically converted the intermediate to 2-amino-5-phenoxyphenol. The results indicate that the enzyme system can be applied for the production of o-aminophenols useful as intermediates for synthesis of commercially important materials. Journal of Industrial Microbiology & Biotechnology (2000) 24, 301–305. Received 13 October 1999/ Accepted in revised form 31 January 2000  相似文献   

2.
White-rot fungi are considered to be promising biotechnological tools to complement or replace the current technologies for the treatment of effluents from textile production plants. The aim of this work was to investigate the decolorization capacity of Ganoderma weberianum B-18 in solid state fermentation with sugarcane bagasse as a substrate and ligninolytic inducer as well as to decolorize and detoxify industrial effluents by this strain in a laboratory scale packed-bed bio-reactor. The results demonstrated that G. weberianum B-18 indeed showed to possess decolorization capacity in solid state fermentation with sugarcane bagasse supplemented with synthetic dyes. Moreover, fungal biomass of G. weberianum B-18 immobilized in sugarcane bagasse in a packed-bed bioreactor was shown to efficiently decolorize and detoxify different dyes and authentic industrial effluents in semi-continuous conditions. In this decolorization process, laccase enzymes secreted by the fungus played the main role. Hence, a packed-bed reactor with G. weberianum B-18 immobilized in sugarcane bagasse seems to be a suitable system for the further development of an efficient bioprocess for large-scale treatment of dye-containing wastewaters.  相似文献   

3.
The soil contaminated by explosive production wastewater was treated by washing using water as solvent. The effect of contact time and temperature, water/soil ratio and washing steps on desorption efficiency was investigated. Six kinetic models—parabolic diffusion model, zero-order equation, pseudo-first-order equation, pseudo-second-order equation, power function equation and Elovich equation—were used to study the desorption kinetics of nitroaromatic compounds from contaminated soil to water. The eluent of contaminated soil before and after washing was characterized by UV–vis analysis. The results showed that the removal rate was fast at the initial stage and then slowed down after 60 min. The desorption of contaminants from soil to water is endothermic. Washing with small quantities of water in high frequency is preferred when water volume is limited. The pseudo-second-order model can be used to describe the desorption process. Soil washing can remove most of the contaminants from the contaminated soil.  相似文献   

4.
The biodegradation of nitrobenzene was attempted by using Pseudomonas putida TB 103 which possesses the hybrid pathway combining the tod and the tol pathways. Analysis of the metabolic flux of nitrobenzene through the hybrid pathway indicated that nitrobenzene was initially oxidized to cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene by toluene dioxygenase in the tod pathway and then channeled into the tol pathway, leading to the complete biodegradation of nitrobenzene. A crucial metabolic step redirecting the metabolic flux of nitrobenzene from the tod to the tol pathway was determined from the genetic and biochemical studies on the enzymes involved in the tol pathway. From these results, it was found that toluate-cis-glycol dehydrogenase could convert cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene to catechol in the presence of NAD(+) with liberation of nitrite and the reduced form of NAD(+) (NADH) into the medium. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Much attention has been devoted recently to the fate of pharmaceutically active compounds such as tetracycline antibiotics in soil and water. Tetracycline (TC) biodegradability by activated sludge derived from membrane bioreactor (MBR) treating swine wastewater via CO2-evolution was evaluated by means of modified Sturm test, which was also used to evaluate its toxicity on carbon degradation. The impact of tetracycline on a semi-industrial MBR process was also examined and confronted to lab-scale experiments. After tetracycline injection in the pilot, no disturbance was detected on the elimination of organic matters and ammonium (nitrification), reaching after injection 88% and 99% respectively; only denitrification was slightly affected. Confirming the ruggedness and the superiority of membrane bioreactors over conventional bioreactors, no toxicity was observed at the considered level of TC in the pilot (20 mg TOC L−1), while at lab-scale sodium benzoate biodegradation was completely inhibited from 10 mg TOC L−1 TC. The origin of the activated sludge showed a significant impact on the performances, since the ultimate biodegradation was in the range −50% to −53% for TC concentrations in the range 10–20 mg TOC L−1 with conventional bioreactor sludge and increased to 18% for 40 mg TOC L−1 of TC with activated sludge derived from the MBR pilot. This confirmed the higher resistance of activated sludge arising from membrane bioreactor.  相似文献   

6.
A facultative Staphylococcus arlettae bacterium, isolated from an activated sludge process in a textile industry, was able to successfully decolourize four different azo dyes under microaerophilic conditions (decolourization percentage >97%). Further aeration of the decolourized effluent was performed to promote oxidation of the degradation products. The degradation products were characterized by FT-IR and UV–vis techniques and their toxicity with respect to Daphnia magna was measured. The amine concentrations as well as the total organic carbon (TOC) levels were monitored during the biodegradation process. The presence of aromatic amine in the microaerophilic stage and its absence in the aerobic stage indicated the presence of azoreductase activity and an oxidative biodegradation process, respectively. TOC reduction was ~15% in the microaerophilic stage and ~70% in the aerobic stage. The results provided evidence that, using a single Staphylococcus arlettae strain in the same bioreactor, the sequential microaerophilic/aerobic stages were able to form aromatic amines by reductive break-down of the azo bond and to oxidize them into non-toxic metabolites.  相似文献   

7.
A laboratory-scale anaerobic fixed-bed reactor, operating at ambient temperature (30 to 35°C), was used to treat sewage water from tourist areas in Cuba at hydraulic retention times (HRT) ranging from 4 to 72 h. The total chemical oxygen demand (T-COD), total biological oxygen demand (T-BOD) and total suspended solids removal varied between 30 and 80%, 40 and 95% and 25 and 80%, respectively. Total and faecal coliforms were reduced by 98.1 to 99.9% and by 99.0% to 99.9% respectively, despite the marked decrease in HRT from 72 to 4 h.  相似文献   

8.
The biotreatment of complex mixtures of volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylene isomers (BTEX) has been investigated by many workers. However, the majority of the work has dealt with the treatment of aqueous or soil phase contamination. The biological treatment of gas and vapor phase sources of VOC wastes has recently received attention with increased usage of biofilters and bioscrubbers. Although these systems are relatively inexpensive, performance problems associated with biomass plugging, gas channeling, and support media acidification have limited their adoption. In this report we describe the development and evaluation of an alternative biotreatment system that allows rapid diffusion of both BTEX and oxygen through a silicone membrane to an active biofilm. The bioreactor system has a rapid liquid recycle, which facilitates nutrient medium mixing over the biofilm and allows for removal of sloughing cell mass. The system removed BTEX at rates up to 30 μg h−1 cm−2 of membrane area. BTEX removal efficiencies ranged from 75% to 99% depending on the BTEX concentration and vapor flowrate. Consequently, the system can be used for continuous removal and destruction of BTEX and other potential target VOCs in vapor phase streams. Journal of Industrial Microbiology & Biotechnology (2001) 26, 316–325. Received 14 August 2000/ Accepted in revised form 28 February 2001  相似文献   

9.
Acid blue-15, a complex and resonance-stabilized triphenylmethane (TPM) textile dye, resistant to transformation, was decolorized/degraded in an up-flow immobilized cell bioreactor. A consortium comprised of isolates belonging to Bacillus sp., Alcaligenes sp. and Aeromonas sp. formed a multispecies biofilm on refractory brick pieces used as support material. The TPM dye was degraded to simple metabolic intermediates in the bioreactor with 94% decolorization at a flow rate of 4 ml h–1.  相似文献   

10.
The Everglades in South Florida are a unique ecologicalsystem. As a result of the widespread use of pesticides andherbicides in agricultural areas upstream from these wetlands,there is a serious potential for pollution problems in theEverglades. The purpose of this study was to evaluate theability of indigenous microbial populations to degradexenobiotic organic compounds introduced by agricultural andother activities. Such biodegradation may facilitate theremediation of contaminated soils and water in the Everglades.The model compound selected in this study is 4-nitrophenol, achemical commonly used in the manufacture of pesticides. Themineralization of 4-nitrophenol at various concentrations wasstudied in soils collected from the Everglades. Atconcentrations of 10 and 100 µg/g soil, considerablemineralization occurred within a week. At a higherconcentration, i.e., 10 mg/g soil, however, no mineralizationof 4-nitrophenol occurred over a 4-month period; such a highconcentration apparently produced an inhibitory effect. Therate and extent of 4-nitrophenol mineralization was enhancedon inoculation with previously isolated nitrophenol-degradingmicroorganisms. The maximum mineralization extent measured,however, was less than 30% suggesting conversion to biomassand/or unidentified intermediate products. These resultsindicate the potential for natural mechanisms to mitigate theadverse effects of xenobiotic pollutants in a complex systemsuch as the Everglades.  相似文献   

11.
Soil contaminated with moderate concentrations (0.1 g to a few grams) of several chlorophenol (CP) congeners can be remediated by a combination of alkaline extraction and mineralization of the extracted CP in a bioreactor. This method could substitute energy-demanding thermal treatment or space-requiring composting of moderately CP-contaminated soils. 2,6-dichlorophenol (2,6-DCP) served as a model compound to study the alkaline extraction of a loamy sand soil, followed by a biological treatment of the extract. Alkaline extraction is shown to be applicable to different types of soil and a wide range of chlorophenol concentrations. Soil washing was optimal with 10 mM NaOH (pH 12). The procedure yielded 2,6-DCP comparable to amounts obtained by Soxhlet- or ethanol-extraction. With the model soil used in this study, three subsequent extraction steps led to 97% removal of the initially spiked 6.17 mmol 2,6-DCP × kg-1 soil (=1 g/kg), thus reaching the remediation goal of ≤ 0.2 mmol/kg remaining contaminant concentration. The resulting aqueous extract contained up to 6.8 mM 2,6-DCP and was treated in an aerobic fixed-bed bioreactor. The extraction medium was fed into a recirculation loop in order to dilute the pollutant to concentrations tolerated by the mixed bacterial culture in the reactor. 2,6-DCP was degraded to below the quantification limit (1.8 μiM), and significant detoxification was reached at volumetric loading rates up to 2.1 g/L-d.  相似文献   

12.
Removal of Pb(II) from an aqueous environment using biosorbents is a cost-effective and environmentally benign method. The biosorption process, however, is little understood for biosorbents prepared from plant materials. In this study, the biosorption process was investigated by evaluating four adsorption models. A fixed-bed column was prepared using a biosorbent prepared from the aquatic plant Hydrilla verticillata. The effect of bed height and flow rate on the biosorption process was investigated. The objective of the study was to determine the ability of H. verticillata to biosorb Pb(II) from an aqueous environment and to understand the process, through modeling, to provide a basis to develop a practical biosorbent column. Experimental breakthrough curves for biosorption of 50 mg L?1 aqueous Pb(II) using a fixed-bed column with 1.00 cm inner diameter were fitted to the Thomas, Adams-Bohart, Belter, and bed depth service time (BDST) models to investigate the behavior of each model according to the adsorption system and thus understand the adsorption mechanism. Model parameters were evaluated using linear and nonlinear regression methods. The biosorbent removed 65% (82.39 mg g?1 of biosorbent) of Pb(II) from an aqueous solution of Pb(NO3)2 at a flow rate of 5.0 ml min?1 in a 10 cm column. Na2CO3 was used to recover the adsorbed Pb(II) ions as PbCO3 from the biosorbent. The Pb(II) was completely desorbed at a bed height of 10.0 cm and a flow rate of 5.0 ml min?1. Fourier transform infrared (FT-IR) analysis of the native biosorbent and Pb(II)-loaded biosorbent indicated that the hydroxyl groups and carboxylic acid groups were involved in the metal bonding process. The FT-IR spectrum of Pb(II)-desorbed biosorbent showed an intermediate peak shift, indicating that Pb(II) ions were replaced by Na+ ions through an ion-exchange process. Of the four models tested, the Thomas and BDST models showed good agreement with experimental data. The calculated bed sorption capacity N0 and rate constant ka were 31.7 g L?1 and 13.6 × 10?4 L mg?1 min?1 for the Ct/C0 value of 0.02. The BDST model can be used to estimate the column parameters to design a large-scale column.  相似文献   

13.
Summary Paecilomyces sp. and Pseudomonas syringae pv myricae (CSA105) were isolated from sediment core of drainage of the pulp and paper mill industry. Fungi and bacteria were applied for treatment of pulp and paper mill effluent in a two-step and three-step fixed film sequential bioreactor containing sand and gravel at the bottom of the reactor for immobilization of microbial cells. Degradation of chlorinated phenols and formation of their metabolites were determined by high performance liquid chromatography. The microbes exhibited significant reduction in colour (88.5%), lignin (79.5%), chemical oxygen demand (87.2%) and phenol (87.7%) in two-step aerobic sequential bioreactor, and colour (87.7%), lignin (76.5%), chemical oxygen demand (83.9%) and phenol (87.2%) in three-step anaerobic-aerobic sequential bioreactor.  相似文献   

14.
We investigated the behavior of tetracycline degradation and its degradation products upon treatment of isolated yeast that we termed “XPY-10.” XPY-10 was isolated from wastewater and identified as Trichosporon mycotoxinivorans by morphological and physiological tests and 5.8S rRNA ITS sequencing. In our experiments, 78.28 ± 0.8% of tetracycline was removed within 7 days with XPY-10. The degradation of tetracycline fitted well with the first-order kinetic model. We also speculated upon the biodegradation products formed during biodegradation. The possible structures of five products were determined using liquid chromatography–tandem mass spectrometry. During practical application, XPY-10 was shown to have an obvious influence on biodegradation, and 89.61% of tetracycline was removed in feedlot sewage after 7 days of reaction. The chemical oxygen demand removal reached 73.47%.  相似文献   

15.
Mixed culture of microorganisms immobilized onto Celite diatomaceous earth particles were used to degrade 3,4-dichloroaniline (34DCA) in a three-phase draft tube fluidized bed bioreactor. Biodegradation was confirmed as the dominant removal mechanism by measurements of the concomitant chloride ion evolution. Degradation efficiencies of 95% were obtained at a reactor retention time of 1.25 h. A mathematical model was used to describe the simultaneous diffusion and reaction of 34DCA and oxygen in the biofilms on the particles in the reactor. The parameters describing freely suspended cell growth on 34DCA were obtained in batch experiments. The model was found to describe the system well for three out of four steady states and to predict qualitatively the experimentally observed transition in the biofilm kinetics from 34DCA to oxygen limitation.  相似文献   

16.
Hexachlorobenzene (HCB), one of twelve compounds classified as persistent organic pollutants (POP), is a byproduct of the manufacture of organochlorine compounds, and is a cause of environmental contamination in several parts of the world. Its degradation by Brazilian basidiomycetes was studied through chromatographic analyses and monitoring of the production of 14CO2 from [14C]HCB in the soil. Nineteen strains of basidiomycetes were found to be capable of tolerating concentrations of 5000 to 50,000 mg of HCB kg–1 of soil. In spite of the low rates of production of 14CO2, Psilocybe cf. castanella CCB444 and Lentinus cf. zeyheri CCB274 were capable of removing nearly 3150 and 1400 mg of HCB kg–1 from respective soil samples, during a 65-day study period.  相似文献   

17.
Phenanthrene biodegradation was investigated at different soil water contents [0.11, 0.22, 0.33, 0.44 g H2O (g soil)?1] to determine the effects of water availability on biodegradation rate. A subsurface horizon of Kennebec silty loam soil was used in this study. [9-14C] phenanthrene was dissolved in a mixture of organic contaminants that consisted of 76% decane, 6% ρ-xylene, 6% phenanthrene, 6% pristane, and 6% naphthalene, and then added to the soil. The highest rate of mineralization, in which 0.23% of the [9-14C] phenanthrene degraded to 14CO2 after 66 days of incubation, was observed at the soil water content of 0.44 g H2O/g dry soil. Most of the 14C remained in the soil as the parent compound or as nonextractable compounds by acetonitrile at the highest water content. Concentrations of nonextractable compounds increased with water content, but residual extractable phenanthrene decreased significantly with increasing water content, which presumably indicates that bio-transformation occurred. The mineralization analysis of radiolabeled 9th carbon in phenanthrene underestimated phenanthrene biodegradation. The strong adsorption and low solubility of phenanthrene contributed to the low mineralization of phenanthrene 9th carbon. The other components were subject to higher biological and abiotic dissipation processes with increasing soil water content.  相似文献   

18.
19.
A BHK 21 cell line expressing a recombinant antibody was grown in a fixed bed reactor (FBR) system using a porous support made of Siran glass beads. The contribution of five process variables (bead and inoculum sizes; circulation and dilution rates; glutamine concentration of the feed) to the productivity of the process (defined as production rate, effluent product concentration or yield of product on medium supplied) was investigated using a partial factorial experimental design. Individually, none of the variables tested had a significant affect upon productivity. The combination of smaller bead and inoculum sizes, higher circulation and dilution rates, plus higher feed glutamine concentration gave a markedly higher productivity than any other combination of variable levels tested. This combination of variable levels suggested that better results shold be obtained using a fluidised bed reactor system. However, comparison of the productivities of the two systems showed that the FBR gave the better results. This result can be explained in terms of the relationship of QsrAb to .Abbreviations C concentration - D dilution rate - FBR fixed bed bioreactor - FIBR fluidised bed bioreactor - Gln glutamine - Qs cell specific rate - Qv volumetric rate - rAb recombinant antibody - Xv viable cell density - specific growth rate  相似文献   

20.
The effect of the number of stages and cell carrier loading on the steady-state and startup performance of a continuous pulsed plate bioreactor with glass beads as the cell carrier material for biodegradation of phenol in wastewater using immobilized Nocardia hydrocarbonoxydans has been studied. It was found that the performance of the pulsed plate bioreactor during startup and at steady state can be improved by an increase in cell carrier loading, number of stages, total plate stack height, and with a decrease in plate spacing. The startup time for the continuous bioreactor can be decreased by increasing the number of preacclimatization steps for the cells. The attainment of steady effluent phenol concentration can be considered as an indication of steady state of the continuous bioreactor, as when phenol concentration attained a steady value, biofilm thickness, and the attached biomass dry weight also attained a constant value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号