首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Neuroendocrinology of the thymus   总被引:4,自引:0,他引:4  
The neuropeptides oxytocin (OT) and vasopressin (VP) are synthesized in the human thymus in a similar way as in the hypothalamo-neurophypophyseal system. Immunocytochemistry with polyclonal and monoclonal antibodies revealed that immunoreactive OT- and VP-producing cells are localized in the subcapsular cortex and medulla of human and murine thymuses. The epithelial nature of the neuroendocrine thymic cells is demonstrated by their immunostaining with a monoclonal antibody against cytokeratin. An original example of a neuroendocrine-immune microenvironment is given by the thymic nurse cells which are composed of a large neuroendocrine epithelial cell enclosing numerous mitotic immature thymocytes. These observations and the previously reported mitogenic and immunomodulatory properties of VP and OT upon mature T cells and thymocytes strongly support the existence of a neuroendocrine thymo-lymphoid axis and an active role of thymic VP and OT in T cell differentiation and activation.  相似文献   

6.
7.
We investigated the T cell responses in various tissues, especially in the liver and thymus, of mice injected with syngeneic tumors. This study was undertaken since recent evidence indicated that the liver is one of the important immune organs for T cell proliferation. When C3H/He mice were intraperitoneally injected with mitomycin-treated syngeneic MH134 tumors (1 x 10(7)/mouse), a transient increase of liver mononuclear cells (MNC) was induced, showing a peak at Day 4 after injection. Histological study of such liver showed a sinusoidal dilatation and an accumulation of MNC in the sinusoids. The most predominant MNC induced were double negative (CD4-8-) alpha beta T cells and gamma delta T cells. These gamma delta T cells varied, showing unique time-kinetics. Despite a continuous increase of whole liver MNC and alpha beta T cells, the proportion of gamma delta T cells in the liver decreased beginning 4 days after injection. In contrast with the response in the liver, a striking decrease in the cell number of thymocytes was induced after tumor injection, showing a basal level at Day 6. This hypocellularity in the thymus appears to be an inverted response of the lymphocytosis in the liver. At this time, a corresponding decrease in the proportion of double positive (CD4+8+) T cells was always seen in the thymus. Analysis of cell proliferative response showed that the increase of liver MNC after tumor injection was accompanied by augmented proliferation, whereas the decrease of thymocytes was accompanied by depressed proliferation. The present results indicate that there exists a unique, reciprocal response of T lymphocytes between the liver and thymus, and that the presence of tumor appears to stimulate T cell response in the liver but alternatively inactivates such response in the thymus.  相似文献   

8.
9.
10.
11.
12.
13.
Mouse early embryos and embryo fragments were transplanted into an immunologically privileged site, consisting of a glass cylinder previously implanted under the skin of adult mice in order to test their tumor producing potential, in allogeneic adult recipients. The highest yield of tumors was obtained upon transplantation of 6 1/2 day old embryos in toto. i.e., including the embryonic and extraembryonic areas. Histological examination showed teratomas composed of differentiated tissues derived from the three germ layers containing isolated foci of undifferentiated cells and nodules of trophoblast giant cells. Areas exhibiting the histological appearance of yolk sac carcinoma were also observed. Transplantation of the whole 6 1/2 day old egg cylinder, including the ectoplacental cone, and the isolated embryonic area produced a lower incidence of teratomas with a reduced variety of differentiated tissues. No yolk sac carcinoma was found in these grafts. The ectoplacental cone of 6 1/2 day embryos produced no tumors. Grafts of genital ridges from 12 1/2 day embryos gave rise to teratomas with well differentiated tissues of embryonic and extraembryonic origin. Areas ressembling yolk sac carcinoma were also observed. The life span of trophoblastic giant cells within the glass cylinder was significantly longer than in other experimental systems.  相似文献   

14.
15.
In vivo anti-tumor activity of spleen cells from C3H/eb mice bearing a syngeneic fibrosarcoma was shown previously to decline to an undetectable level and be replaced by tumor-enhancing activity as tumor growth proceeds. In the light of our findings that thymocytes in the early stages of thymic processing can bring about tumor enhancement, we postulated that premature release of thymocytes and their accumulation in the spleen might account for the loss of the anti-tumor response. In the present experiments an injection of thymocytes did in fact cancel the anti-tumor response of reactive splenocytes from tumor-bearing mice. In order to determine whether premature thymocyte release occurs naturally in the tumor-bearing animals, we assayed activity of the enzyme TdT (as a marker for thymus cells) in the spleens of these mice during progressive tumor growth. Cells with TdT activity were clearly evident in the spleens of the tumor-bearing animals, were derived from the thymus, and accumulated in parallel to the loss of anti-tumour reactivity.  相似文献   

16.
17.
18.
We have examined infection of the thymus during congenitally acquired chronic lymphocytic choriomeningitis virus (LCMV) infection of mice, a classic model of antigen-specific T-cell tolerance. Our results show that (i) infection starts at the fetal stage and is maintained throughout adulthood, and (ii) this chronic infection of the thymus can be eliminated by transfer of virus-specific cytotoxic T lymphocytes (CTL) that infiltrate the thymus and clear all viral products from both medullary and cortical regions. Elimination of virus from the thymus results in abrogation of tolerance. During the fetal stage, the predominant cell type infected is the earliest precursor of T cells with a surface phenotype of Thy1+ CD4- CD8- J11d+. In the adult thymus, infection is confined primarily to the cortisone-resistant thymocytes present in the medullary region. The infected cells are CD4+ and J11d+. The presence of J11d, a marker usually associated with immature thymocytes, on infected single positive CD4+ "mature" thymocytes is intriguing and suggests that infection by this noncytolytic virus may affect development of T cells. There is minimal infection of the CD8+ medullary thymocytes or of the double positive (CD4+ CD8+) cells present in the cortex. Infection within the cortex is confined to the stromal cells. Interestingly, there is infection of the double negative (CD4- CD8-) thymocytes in the adult thymus, showing that even during adulthood the newly developing T cells are susceptible to infection by LCMV. Virus can be eliminated from the thymuses of these carrier mice by adoptive transfer of medullary region first and then from the thymic cortex. This result clearly shows the need to reevaluate the widely held notion that mature T cells are unable to reenter the thymus. In fact, in our experiments the donor T cells made up to 20 to 30% of the total cells in the thymus at 5 to 7 days after the transfer. The number of donor T cells declined as virus was eliminated from the thymus, and at 1 month posttransfer, the donor T cells were hardly detectable. The results of this study examining the dynamics of viral infection and clearance from the thymus, the primary site of T-cell development, have implications for understanding tolerance induction in chronic viral infections.  相似文献   

19.
20.
The immunological function of the thymus was first documented 50 years ago by using neonatally thymectomized mice, while studying its role in virus-induced leukaemia. Since then, an enormous wealth of reports has helped to define the importance of this primary lymphoid organ. In this article, I summarize the key advances that have led to our current knowledge of the functions of the thymus and its T cells in immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号