首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replicating deoxyribonucleic acid (DNA) molecules of plasmid RSF1040, a deletion mutant of the conjugative R plasmid R6K, appear in the electron microscope as partially supercoiled structures with two open circular branches of equal size, although open structures with three branches, two branching points and no supercoiled regions (theta structures) were also found at a lower frequency. The partially supercoiled molecules sediment more rapidly than native covalently closed circular DNA in neutral sucrose gradients and band at a position intermediate between covalently closed circular and open circular DNA in CsClethidium bromide gradients. Electron microscope measurements of the linear EcoRI-treated replicative intermediates indicate that replication can be initiated at two sites (origins) on the plasmid DNA molecule located at about 23% (alpha) and 39% (beta) of the total genome length from an EcoRI end designated arbitrarily as the "left-hand" end of the molecule. The overall replication of RSF1040 is asymmetrically bidirectional. Replication from the alpha origin proceeds first to the "right" to a unique termination site located some 55% of the total genome length from the left-hand end of the molecule. At this point replication proceeds from the alpha origin to the "left" (i.e., opposite to the original direction of replication) until replication of the molecule is completed. Replication also proceeds from the beta origin asymmetrically to the unique terminus site.  相似文献   

2.
Two-dimensional neutral/neutral agarose gel electrophoresis is used extensively to localize replication origins. This method resolves DNA structures containing replication forks. It also detects X-shaped recombination intermediates in meiotic cells, in the form of a typical vertical spike. Intriguingly, such a spike of joint DNA molecules is often detectable in replicating DNA from mitotic cells. Here, we used naturally synchronous DNA samples from Physarum polycephalum to demonstrate that postreplicative, DNA replication-dependent X-shaped DNA molecules are formed between sister chromatids. These molecules have physical properties reminiscent of Holliday junctions. Our results demonstrate frequent interactions between sister chromatids during a normal cell cycle and suggest a novel phase during DNA replication consisting of transient, joint DNA molecules formed on newly replicated DNA.  相似文献   

3.
We have analyzed the structural characteristics of simian virus 40 replicative intermediate DNA produced after UV irradiation and the kinetics of conversion of this intermediate DNA into form I DNA. Replicative intermediate DNA isolated at 30 or 60 min after UV irradiation consists primarily of two species of molecules that sediment in neutral sucrose gradients as either Cairns theta structures or relaxed monomeric circles. Replication forks on the Cairns intermediate DNA are symmetrically located with respect to the origin of replication, ruling out the possibility of asymmetric pauses or blocks to replication fork progression at damage sites. The relaxed circles contain at least one randomly located discontinuity in the daughter strand. Pulse-chase experiments demonstrated that a UV fluence-dependent fraction of the Cairns intermediate DNA progresses through the relaxed circular intermediate before being converted to completed form I molecules. Disappearance of Cairns intermediate DNA occurs at the same rate in irradiated and unirradiated cells, whereas completion of the relaxed circular intermediate DNA occurs at a slow rate, relatively independent of UV fluence. These data support a model for replication of UV-damaged DNA in which replication rapidly continues past damage sites via a gap formation event.  相似文献   

4.
The size of non-integrated circular Epstein-Barr virus (EBV) DNA molecules isolated from seven different human lymphoblastoid cell lines of infectious mononucleosis origin has been determined by sedimentation analysis and by direct contour length measurements on electron micrographs. Six lines had intracellular circular EBV genomes of the same size as linear virion DNA molecules. The seventh line, established with the B95-8 strain of EBV, was the only one found to have circular EBV DNA molecules significantly smaller than virion DNA. The data show that intracellular EBV DNA circles of reduced size do not generally occur in infectious mononucleosis-derived cell lines.  相似文献   

5.
Pulse-labeled ColEl DNA molecules, undergoing replication in Escherichia coli cells either in the absence or presence of chloramphenicol, were extracted and purified by neutral sucrose density gradient sedimentation and equilibrium centrifugation in an ethidium bromide-cesium chloride gradient. In the dye-buoyant density gradient, the replicating molecules were found in regions between the supercoiled and open-circular nonreplicating plasmid DNA, as well as in the open-circular region. In a neutral sucrose gradient, peaks of pulse label were found in the region of 26 to 38 S as well as at the 23 and 17 S positions corresponding to the positions of supercoiled and open-circular ColEl DNA. In alkaline sucrose gradient, nascent ColEl DNA was found to sediment as discrete peaks corresponding to 5-6, 7-9, and 14-16 S, indicating that at least one growing strand of the replicating molecule is produced discontinuously. In the electron microscope, many of the molecules appeared as partially supercoiled structures containing two open-circular branches of equal length, of less than 20% to more than 90% replicated. Branched open-circular molecules were not observed to any significant extent without prior treatment to induce single-strand scissions. The parental strands of the replicating molecules were determined to be covalently closed, but the superhelical density of the DNA was shown to be progressively decreased as replication proceeded.  相似文献   

6.
The replication of circular DNA faces topological obstacles that need to be overcome to allow the complete duplication and separation of newly replicated molecules. Small bacterial plasmids provide a perfect model system to study the interplay between DNA helicases, polymerases, topoisomerases and the overall architecture of partially replicated molecules. Recent studies have shown that partially replicated circular molecules have an amazing ability to form various types of structures (supercoils, precatenanes, knots and catenanes) that help to accommodate the dynamic interplay between duplex unwinding at the replication fork and DNA unlinking by topoisomerases.  相似文献   

7.
The 165-kb circularized chromosome of Epstein-Barr virus (EBV) is replicated in latently infected cells once per cell cycle by host proteins during S phase. Replication initiates at multiple sites on latent EBV chromosomes, including within a 1.8-kb region called oriP, which can provide both replication and stabilization for recombinant plasmids in the presence of the EBV-encoded protein, EBNA-1. Replication initiates at or near the dyad symmetry component (DS) of oriP, which depends on multiple EBNA-1 binding sites for activity. To test the importance of the replication function of oriP, the DS was deleted from the viral genome. EBV mutants lacking the DS and carrying a selectable gene could establish latent infections in BL30 cells, in which circular, mutant viral chromosomes were stably maintained. Analysis of replication fork movement using two-dimensional gel electrophoresis showed that the deletion of the DS reduced the initiation events to an undetectable level within the oriP region so that this segment was replicated exclusively by forks entering the region from either direction. A significant slowing or stalling of replication forks that occurs normally at the approximate position of the DS was also eliminated by deletion of the DS. The results confirm the DS as both a replication origin and a place where replication forks pause. Since the replication function of oriP is dispensable at least in certain cell lines, the essential role of EBNA-1 for infection of these cell lines is likely to be that of stabilizing the EBV chromosome by associating with the 30-bp repeats of oriP. The results also imply that in established cell lines, the EBV chromosome can be efficiently replicated entirely from origins that are activated by cellular factors. Presumably, initiation of replication at the DS, mediated by EBNA-1, is important for the natural life cycle of EBV, perhaps in establishing latent infections of normal B cells.  相似文献   

8.
Chromosomal DNA replication was examined in temperature-sensitive mutants of Saccharomyces cerevisiae defective in a gene required for the completion of S phase at the nonpermissive temperature, 37 degrees C. Based on incorporation of radioactive precursors and density transfer experiments, strains carrying three different alleles of cdc2 failed to replicate approximately one-third of their nuclear genome at 37 degrees C. Whole-cell autoradiography experiments demonstrated that 93 to 96% of the cells synthesized DNA at 37 degrees C. Therefore, all cells failed to replicate part of their genome. DNA isolated from terminally arrested cells was of normal size as measured on neutral and alkaline sucrose gradients, suggesting that partially replicated DNA molecules do not accumulate and that DNA strands are ligated properly in cdc2 mutants. In addition, electron microscopic examination of the equivalent of more than one genome's DNA from arrested cells failed to reveal any partially replicated molecules. The sequences which failed to replicate at 37 degrees C were not highly specific; eight different cloned sequences replicated to the same extent as total DNA. The 2-microns plasmid DNA and rDNA replicated significantly less well than total DNA, but approximately one-half of these sequences replicated at 37 degrees C. These observations suggest that cdc2 mutants are defective in an aspect of initiation of DNA replication common to all chromosomes such that a random fraction of the chromosomes fail to initiate replication at 37 degrees C, but that once initiated, replication proceeds normally.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) replication produces large intracellular DNA molecules that appear to be in a head-to-tail concatemeric arrangement. We have previously suggested (A. Severini, A.R. Morgan, D.R. Tovell, and D.L.J. Tyrrell, Virology 200:428-435, 1994) that these DNA species may have a complex branched structure. We now provide direct evidence for the presence of branches in the high-molecular-weight DNA produced during HSV-1 replication. On neutral agarose two-dimensional gel electrophoresis, a technique that allows separation of branched restriction fragments from linear fragments, intracellular HSV-1 DNA produces arches characteristic of Y junctions (such as replication forks) and X junctions (such as merging replication forks or recombination intermediates). Branched structures were resolved by T7 phage endonuclease I (gene 3 endonuclease), an enzyme that specifically linearizes Y and X structures. Resolution was detected by the disappearance of the arches on two-dimensional gel electrophoresis. Branched structures were also visualized by electron microscopy. Molecules with a single Y junction were observed, as well as large tangles containing two or more consecutive Y junctions. We had previously shown that a restriction enzyme which cuts the HSV-1 genome once does not resolve the large structure of HSV-1 intracellular DNA on pulsed-field gel electrophoresis. We have confirmed that result by using sucrose gradient sedimentation, in which both undigested and digested replicative intermediates sediment to the bottom of the gradient. Taken together, our experiments show that the intracellular HSV-1 DNA is held together in a large complex by frequent branches that create a network of replicating molecules. The fact that most of these branches are Y structures suggests that the network is held together by frequent replication forks and that it resembles the replicative intermediates of bacteriophage T4. Our findings add complexity to the simple model of rolling-circle DNA replication, and they pose interesting questions as to how the network is formed and how it is resolved for packaging into progeny virions.  相似文献   

10.
Replicating Epstein-Barr virus (EBV) DNA molecules isolated from superinfected Raji cells were shown to consist of 80S to 65S and 58S (mature) molecules Pulse-chase experiments showed that radioactive label of DNAS molecules with the larger sedimentation coefficients was partially chased into 58S labeled forms. Formation of large concatemers of viral DNA could not be detected at any time after superinfection. The continuous presence of the 65S viral DNA intermediate throughout the replicative cycle combined with the observed inhibition of EBV DNA synthesis by addition of nontoxic levels of ethidium bromide to the superinfected cell culture led us to propose that EBV replication proceeds via a relaxed circular DNA intermediate.  相似文献   

11.
Transient four stranded joint DNA molecules bridging sister chromatids constitute an intriguing feature of replicating genomes. Here, we studied their structure and frequency of formation in Physarum polycephalum. By “3D gels”, we evidenced that they are not made of four continuous DNA strands. Discontinuities, which do not interfere with the unique propensity of the joint DNA molecules to branch migrate in vitro, are linked to the crossover, enhanced by RNaseA, and affect at most half of the DNA strands. We propose a structural model of joint DNA molecules containing ribonucleotides inserted within one strand, a gapped strand, and two continuous DNA strands. We further show that spontaneous joint DNA molecules are short-lived and are as abundant as replication forks. Our results emphasize the highly frequent formation of joint DNA molecules involving newly replicated DNA in an untreated cell and uncover a transitory mechanism connecting the sister chromatids during S phase.  相似文献   

12.
Heterochromatin is characteristically the last portion of the genome to be replicated. In polytene cells, heterochromatic sequences are underreplicated because S phase ends before replication of heterochromatin is completed. Truncated heterochromatic DNAs have been identified in polytene cells of Drosophila and may be the discontinuous molecules that form between fully replicated euchromatic and underreplicated heterochromatic regions of the chromosome. In this report, we characterize the temporal pattern of heterochromatic DNA truncation during development of polytene cells. Underreplication occurred during the first polytene S phase, yet DNA truncation, which was found within heterochromatic sequences of all four Drosophila chromosomes, did not occur until the second polytene S phase. DNA truncation was correlated with underreplication, since increasing the replication of satellite sequences with the cycE(1672) mutation caused decreased production of truncated DNAs. Finally, truncation of heterochromatic DNAs was neither quantitatively nor qualitatively affected by modifiers of position effect variegation including the Y chromosome, Su(var)205(2), parental origin, or temperature. We propose that heterochromatic satellite sequences present a barrier to DNA replication and that replication forks that transiently stall at such barriers in late S phase of diploid cells are left unresolved in the shortened S phase of polytene cells. DNA truncation then occurs in the second polytene S phase, when new replication forks extend to the position of forks left unresolved in the first polytene S phase.  相似文献   

13.
To study the structure of partially replicated plasmids, we cloned the Escherichia coli polar replication terminator TerE in its active orientation at different locations in the ColE1 vector pBR18. The resulting plasmids, pBR18-TerE@StyI and pBR18-TerE@EcoRI, were analyzed by neutral/neutral two-dimensional agarose gel electrophoresis and electron microscopy. Replication forks stop at the Ter–TUS complex, leading to the accumulation of specific replication intermediates with a mass 1.26 times the mass of non-replicating plasmids for pBR18-TerE@StyI and 1.57 times for pBR18-TerE@EcoRI. The number of knotted bubbles detected after digestion with ScaI and the number and electrophoretic mobility of undigested partially replicated topoisomers reflect the changes in plasmid topology that occur in DNA molecules replicated to different extents. Exposure to increasing concentrations of chloroquine or ethidium bromide revealed that partially replicated topoisomers (CCCRIs) do not sustain positive supercoiling as efficiently as their non-replicating counterparts. It was suggested that this occurs because in partially replicated plasmids a positive ΔLk is absorbed by regression of the replication fork. Indeed, we showed by electron microscopy that, at least in the presence of chloroquine, some of the CCCRIs of pBR18-Ter@StyI formed Holliday-like junction structures characteristic of reversed forks. However, not all the positive supercoiling was absorbed by fork reversal in the presence of high concentrations of ethidium bromide.  相似文献   

14.
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.  相似文献   

15.
The molecular mechanisms of in vivo inhibition of mammalian DNA replication by exposure to UV light (at 254 nm) was studied in monkey and human cells infected with simian virus 40. Analysis of viral DNA by electron microscopy and sucrose gradients confirmed that the presence of UV-induced lesions severely blocks DNA synthesis, and thus the conversion of replicative intermediates (RIs) into fully replicated form I DNA is inhibited by UV irradiation. These blocked RI molecules present several special features when visualized by electron microscopy. (i) In excision repair-proficient monkey and human cells they are composed of a double-stranded circular DNA with a double-stranded tail whose size corresponds to the average interpyrimidine dimer distance, as determined by the dimer-specific T4 endonuclease V. (ii) In excision repair-deficient human cells from patients with xeroderma pigmentosum, UV-irradiated RIs present a Cairns-like structure similar to that observed for replicating molecules obtained from unirradiated infected cells. (iii) Single-stranded gaps are visualized in the replicated portions of UV-irradiated RI molecules; such regions are detected and clearly distinguishable from double-stranded DNA when probed by a specific single-stranded DNA-binding protein such as the bacteriophage T4 gene 32 product. Consistent with the presence of gaps in UV-irradiated RI molecules, single-strand-specific S1 nuclease digestion causes a shift in their sedimentation properties when analyzed in neutral sucrose gradients compared with undamaged molecules. These results are in agreement with and reinforce the model in which UV lesions are a barrier to the replication fork movement when present in the template for the leading strand; when lesions are in the template for the lagging strand they inhibit synthesis or completion of Okazaki fragments, leaving gaps opposite the lesion. Moreover, cellular DNA repair-linked endonucleolytic activity may induce double-stranded breaks in the blocked region of the replication forks, resulting in the tailed structures observed in viral DNA molecules obtained from excision repair-proficient cell lines.  相似文献   

16.
In previous studies, we utilized a neutral/neutral two-dimensional (2-D) gel replicon mapping method to analyze the pattern of DNA synthesis in the amplified dihydrofolate reductase (DHFR) domain of CHOC 400 cells. Replication forks appeared to initiate at any of a large number of sites scattered throughout the 55 kb region lysing between the DHFR and 2BE2121 genes, and subsequently to move outward through the two genes. In the present study, we have analyzed this locus in detail by a complementary, neutral/alkaline 2-D gel technique that determines the direction in which replication forks move through a region of interest. In the early S period, forks are observed to travel in both directions through the intergenic region, but only outward through the DHFR gene. Surprisingly, however, replication forks also move in both directions through the 2BE2121 gene. Furthermore, in early S phase, small numbers of replication bubbles can be detected in the 2BE2121 gene on neutral/neutral 2-D gels. In contrast, replication bubbles have never been detected in the DHFR gene. Thus, replication initiates not only in the intergenic region, but also at a lower frequency in the 2BE2121 gene. We further show that only a small fraction of DHFR amplicons sustains an active initiation event, with the rest being replicated passively by forks from distant amplicons. These findings are discussed in light of other experimental approaches that suggest the presence of a much more narrowly circumscribed initiation zone within the intergenic region.  相似文献   

17.
In order to understand the mechanisms leading to the complete duplication of linear eukaryotic chromosomes, the temporal order of the events involved in replication of a 7.5-kb Saccharomyces cerevisiae linear plasmid called YLpFAT10 was determined. Two-dimensional agarose gel electrophoresis was used to map the position of the replication origin and the direction of replication fork movement through the plasmid. Replication began near the center of YLpFAT10 at the site in the 2 microns sequences that corresponds to the 2 microns origin of DNA replication. Replication forks proceeded bidirectionally from the origin to the ends of YLpFAT10. Thus, yeast telomeres do not themselves act as origins of DNA replication. The time of origin utilization on YLpFAT10 and on circular 2 microns DNA in the same cells was determined both by two-dimensional gel electrophoresis and by density transfer experiments. As expected, 2 microns DNA replicated in early S phase. However, replication of YLpFAT10 occurred in late S phase. Thus, the time of activation of the 2 microns origin depended upon its physical context. Density transfer experiments established that the acquisition of telomeric TG1-3 single-strand tails, a predicted intermediate in telomere replication, occurred immediately after the replication forks approached the ends of YLpFAT10. Thus, telomere replication may be the very last step in S phase.  相似文献   

18.
19.
Fractionated replicating DNA from pea was obtained from both synchronized cells just starting replication and from carbohydrate-starved cells ending replication. Benzoylated naphthoylated DEAE-cellulose chromatography of pulse-labeled DNA digested with EcoR I gave evidence that a family of replicons initiated replication 45 to 60 min after synchronized cells were released from the G1/S phase boundary. DNA from cells labeled in late S phase, on the other hand, showed no signs of additional replication initiations before entering G2 phase. Results with DNA from both early and late S phase cells comply with a model based on the premise that with short pulses of [3H]-thymidine the isotope is localized at replication forks and that longer pulses label both replication forks and recently replicated segments of double-stranded DNA. The model applies only to DNA subjected to fragmentation before chromatography.The results also suggest that benzoylated naphthoylated DEAE-cellulose chromatography is a useful means to isolate origins and replication forks from synchronized plant cells.  相似文献   

20.
Our laboratory has previously shown that replication of a small plasmid, p174, containing the genetically defined Epstein-Barr virus (EBV) latent origin of replication, oriP, initiates within oriP at or near a dyad symmetry (DS) element and terminates specifically at a family of repeated sequences (FR), also located within oriP. We describe here an analysis of the replication of intact approximately 170-kb EBV genomes in four latently infected cell lines that uses two-dimensional gel replicon mapping. Initiation was detected at oriP in all EBV genomes examined; however, some replication forks appear to originate from alternative initiation sites. In addition, pausing of replication forks was observed at the two clusters of EBV nuclear antigen 1 binding sites within oriP and at or near two highly expressed viral genes 0.5 to 1 kb upstream of oriP, the EBV-encoded RNA (EBER) genes. In the Raji EBV genome, the relative abundance of these stalled forks and the direction in which they are stalled indicate that most replication forks originate upstream of oriP. We thus searched for additional initiation sites in the Raji EBV and found that the majority of initiation events were distributed over a broad region to the left of oriP. This delocalized pattern of initiation resembles initiation of replication in several well-characterized mammalian chromosomal loci and is the first described for any viral genome. EBV thus provides a unique model system with which to investigate factors influencing the selection of replication initiation and termination sites in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号