首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of daytime noise on recovery processes during subsequent undisturbed night sleep were studied in six healthy men (21-27 years), exposed to 80 dB (A) pink noise 8 h per day for 2 days. Sleep EEG, ECG, and respiration were recorded in the laboratory for five consecutive nights: two baseline nights, two nights following noise stimulation, and again one baseline night. Additionally questionnaire data were collected, reflecting a subjective impairment of the recovery function of sleep after noise exposure. EEG sleep data of the first post-noise night showed an increase in slow wave sleep with a simultaneous decrease in stage 2 sleep. During the second post-noise night these changes were less prominent. Three subjects additionally showed an instability in the sleep course coinciding with elevated heart and respiration rates. However, altogether the autonomic parameters were not clearly affected by the noise exposure. The findings support the assumption that strong daytime noise may interfere with subsequent sleep processes.  相似文献   

2.
Experiments were carried out on four healthy male subjects in two separate sessions: (a) A baseline period of two consecutive nights, one spent at thermoneutrality [operative temperature (To) = 30 degrees C, dew-point temperature (Tdp) = 7 degrees C, air velocity (Va) = 0.2 m.s-1] and the other in hot condition (To = 35 degrees C, Tdp = 7 degrees C, Va = 0.2 m.s-1). During the day, the subjects lived in their normal housing and were engaged in their usual activities. (b) An acclimation period of seven consecutive daily heat exposures from 1400 to 1700 hours (To = 44 degrees C, Tdp = 29 degrees C, Va = 0.3 m.s-1). During each night, the subjects slept in thermoneutral or in hot conditions. The sleep measurements were: EEG from two sites, EOG from both eyes, EMG and EKG. Esophageal and ten skin temperatures were recorded continuously during the night. In the nocturnal hot conditions, a sweat collection capsule recorded the sweat gland activity in the different sleep stages. Results showed that passive body heating had no significant effect on the sleep structure of subsequent nights at thermoneutrality. In contrast, during nights at To = 35 degrees C an effect of daily heat exposure was observed on sleep. During the 2nd night of the heat acclimation period, sleep was more restless and less efficient than during the baseline night. The rapid eye movement sleep duration was reduced, while the rate of transient activation phases observed in sleep stage 2 increased significantly. On the 7th night, stage 4 sleep increased (+68%) over values observed during the baseline night.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.  相似文献   

4.
To assess the effect of continuous heat exposure on the nocturnal patterns of renin, aldosterone, adrenocorticotropic hormone (ACTH), and cortisol, six young men were exposed to thermoneutral environment for 5 days, followed by a 5-day acclimation period in a hot dry environment (35 degrees C). Blood was collected at 10-min intervals during the second night at thermoneutrality (N0) and during the first (N1) and the last (N5) nights of heat exposure. Polygraphic recordings of sleep were scored according to established criteria. Continuous heat exposure led to progressive decreases in the 24-h urinary volume and in Na excretion, whereas urinary osmolality increased. After 5 days of uninterrupted heat, significant increases were found in plasma volume (P less than 0.05), osmolality (P less than 0.01), plasma Na (P less than 0.01), and protein levels (P less than 0.05). Sweat gland output increased during the first 3 days and then declined without any concomitant increases in body temperature. Compared with N0, there were no differences in plasma renin activity (PRA) and aldosterone (PA) profiles during N1 at 35 degrees C. However, during N5 the mean PRA and PA levels were significantly (P less than 0.05) enhanced, and their nocturnal oscillations were amplified (P less than 0.05). This amplification occurred mainly in the second part of the night when regular rapid-eye-movement and non-rapid-eye-movement sleep cycles were observed, leading to a general upward trend in the nocturnal profiles. The relationship between the nocturnal PRA oscillations and the sleep cycles was not modified. ACTH and cortisol patterns were not affected by continuous heat exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
It is unknown whether daytime features predict oxygenation during sleep in COPD patients with normoxaemia or mild hypoxaemia. In this study our purpose was to evaluate by a pulse oxymeter, nocturnal desaturation in 33 COPD with PaO2 > 60 mmHg and to examine some daytime parameters as possible predictors of nocturnal hypoxaemia. A significant nocturnal desaturation has been defined by spending > or = 30% of total sleep-time with a TSTSaO2 < 90% > 30. According to this criterion we classified our patients in Desaturators (D) and Non Desaturators (ND). Our results showed that 39% of our patients were D and 61% ND. Among anthropometric and respiratory functional data we found that daytime SaO2B (r = 0.74 p < 0.001) daytime PaO2 (r = 0.47 p < 0.01) and daytime PaCO2 (r = 0.45 p < 0.05) were significantly correlated with the nocturnal oxygen desaturation and can predict the presence of sleep related hypoxaemia. In conclusion, our study confirms that a relatively high percentage of COPD patients with normoxaemia or borderline hypoxaemia exhibits significant nocturnal hypoxaemia. Further studies will suggest whether sleep related hypoxaemia deserves nocturnal oxygen therapy.  相似文献   

6.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift-work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re-examined during follow-up sessions after four and twelve months of shift-work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow-up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift-work exposure. Systematic inter-individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow-up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long-term overall tolerance for shift work.  相似文献   

7.
The authors studied whether melatonin administration improves adaptation of workers to nightshift and if its beneficial effect is enhanced by attenuation of morning sunlight exposure. Twelve nightshift nurses received three treatments: Placebo (Pla), Melatonin (Mel), and Melatonin with Sunglasses (Mel-S). Each treatment procedure was administered for 2 d of different 4d nightshifts in a repeated measures crossover design. In Pla, nurses were treated with placebo before daytime sleep and allowed exposure to morning sunlight. In Mel, 6 mg of melatonin was similarly administered before daytime sleep with morning sunlight permitted. In Mel-S, 6 mg of melatonin was given as in Mel, with sunglasses worn in the morning to attenuate sunlight exposure. Placebo or melatonin was administered during days 2 and 3 when the first and second daytime sleep occurred. Nocturnal alertness and performance plus daytime sleep and mood states were assessed during all three treatments. The sleep period and total sleep times were significantly increased by melatonin treatments; yet, nocturnal alertness was only marginally improved. There were no differences between Mel and Mel-S. Performance tests revealed no difference between Pla and melatonin treatments. Melatonin exerted modest benefit in improving the adaptation of workers to nightshift, and its effect was not enhanced by attenuation of morning sunlight exposure.  相似文献   

8.
Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed. The peak level of melatonin rise was not affected. As a result, the width of nocturnal melatonin rise was significantly shortened. In the second week, under bright light conditions ( approximately 5,000 lx), the phases of nocturnal melatonin rise were not changed further, but the peak level was significantly increased. Core body temperature at the initial sleep phase was progressively elevated during the course of dim light exposure and reached the maximum level at the first night of bright light conditions. Subjective sleepiness gradually declined in the course of dim light exposure and reached the minimum level at the first day of bright light. These findings indicate that repeated exposures to daytime bright light are effective in controlling the circadian phase and increasing the peak level of nocturnal melatonin rise in plasma and suggest a close correlation between phase-delay shifts of the onset of nocturnal melatonin rise or body temperature rhythm and daytime sleepiness.  相似文献   

9.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift‐work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re‐examined during follow‐up sessions after four and twelve months of shift‐work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow‐up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift‐work exposure. Systematic inter‐individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow‐up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long‐term overall tolerance for shift work.  相似文献   

10.
Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1) and a 2-hour interval involving either daytime napping or wakefulness (experiment 2). Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen’s d = 0.71 and 0.68) than for related ones (Cohen’s d = 0.58 and 0.15). While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting.  相似文献   

11.
The authors studied whether melatonin administration improves adaptation of workers to nightshift and if its beneficial effect is enhanced by attenuation of morning sunlight exposure. Twelve nightshift nurses received three treatments: Placebo (Pla), Melatonin (Mel), and Melatonin with Sunglasses (Mel-S). Each treatment procedure was administered for 2 d of different 4d nightshifts in a repeated measures crossover design. In Pla, nurses were treated with placebo before daytime sleep and allowed exposure to morning sunlight. In Mel, 6 mg of melatonin was similarly administered before daytime sleep with morning sunlight permitted. In Mel-S, 6 mg of melatonin was given as in Mel, with sunglasses worn in the morning to attenuate sunlight exposure. Placebo or melatonin was administered during days 2 and 3 when the first and second daytime sleep occurred. Nocturnal alertness and performance plus daytime sleep and mood states were assessed during all three treatments. The sleep period and total sleep times were significantly increased by melatonin treatments; yet, nocturnal alertness was only marginally improved. There were no differences between Mel and Mel-S. Performance tests revealed no difference between Pla and melatonin treatments. Melatonin exerted modest benefit in improving the adaptation of workers to nightshift, and its effect was not enhanced by attenuation of morning sunlight exposure.  相似文献   

12.
This study was intended to determine the effects of continuous bright light exposure on cardiovascular responses, particularly heart rate variability (HRV), at rest and during performance of mental tasks with acute nocturnal sleep deprivation. Eight healthy male subjects stayed awake from 21.00 to 04.30 hours under bright (BL, 2800 lux) or dim (DL, 120 lux) light conditions. During sleep deprivation, mental tasks (Stroop color-word conflict test: CWT) were performed for 15 min each hour. Blood pressure, electrocardiogram, respiratory rate, urinary melatonin concentrations and rectal temperature were measured. During sleep deprivation, BL exposure depressed melatonin secretion in comparison to DL conditions. During sleep deprivation, exposure to BL delayed the decline in heart rate (HR) for 4 h in resting periods. A significant increment of HR induced by each CWT was detected, especially at 03.00 h and later, under DL conditions only. In addition, at 04.00 h, an index of sympathetic activity and sympatho-vagal balance on HRV during CWT increased significantly under DL conditions. In contrast, an index of parasympathetic activity during CWT decreased significantly under DL conditions. However, the indexes of HRV during CWT did not change throughout sleep deprivation under BL conditions. Our results suggest that BL exposure not only delays the nocturnal decrease in HR at rest but also maintains HR and balance of cardiac autonomic modulation to mental tasks during nocturnal sleep deprivation.  相似文献   

13.
In recent years, sleep abnormalities have increasingly been observed in patients with movement disorders. During sleep, most patients with Parkinson's disease also exhibit the movements characteristically seen during the wake period. Movement activity during sleep may impair sleep quality and lead to daytime sleepiness and reduced quality of life. Disordered REM sleep with enhanced muscle tone is common in patients with neurodegenerative disease, and may precede the clinically evident symptoms of Parkinson's disease by years. Sleep disorders in patients with Parkinson's disease are common, and require the application of individual treatment strategies. A further frequent disorder primarily classified as a sleep disorder (dyssomnia) is the restless legs syndrome (RLS), which is closely related to the nocturnal periodic limb movement disorder and affects up to 15% of the population. The present review focuses on nocturnal motor activity and sleep in Parkinson's disease and RLS.  相似文献   

14.
Light is a very important regulator of the daily sleep rhythm. Here, we investigate the influence of nocturnal light stimulation on Drosophila sleep. Results showed that total daytime sleep was reduced due to a decrease in daytime sleep episode duration caused by discontinuous light stimulation, but sleep was not strongly impacted at nighttime although the discontinuous light stimulation occurred during the scotophase. During a subsequent recovery period without light interruption, the sleep quality of nighttime sleep was improved and of daytime sleep reduced, indicating flies have a persistent response to nocturnal light stimulation. Further studies showed that the discontinuous light stimulation damped the daily rhythm of a circadian light-sensitive protein cryptochrome both at the mRNA and protein levels, which subsequently caused disappearance of circadian rhythm of the core oscillator timeless and decrease of TIMLESS protein at nighttime. These data indicate that the nocturnal light interruption plays an important role in sleep through core proteins CRYTOCHROME and TIMLESS, Moreover, interruption of sleep further impacted reproduction and viability.  相似文献   

15.
In two previous studies we demonstrated that radiofrequency electromagnetic fields (RF EMF) similar to those emitted by digital radiotelephone handsets affect brain physiology of healthy young subjects exposed to RF EMF (900 MHz; spatial peak specific absorption rate [SAR] 1 W/kg) either during sleep or during the waking period preceding sleep. In the first experiment, subjects were exposed intermittently during an 8 h nighttime sleep episode and in the second experiment, unilaterally for 30 min prior to a 3 h daytime sleep episode. Here we report an extended analysis of the two studies as well as the detailed dosimetry of the brain areas, including the assessment of the exposure variability and uncertainties. The latter enabled a more in depth analysis and discussion of the findings. Compared to the control condition with sham exposure, spectral power of the non-rapid eye movement sleep electroencephalogram (EEG) was initially increased in the 9-14 Hz range in both experiments. No topographical differences with respect to the effect of RF EMF exposure were observed in the two experiments. Even unilateral exposure during waking induced a similar effect in both hemispheres. Exposure during sleep reduced waking after sleep onset and affected heart rate variability. Exposure prior to sleep reduced heart rate during waking and stage 1 sleep. The lack of asymmetries in the effects on sleep EEG, independent of bi- or unilateral exposure of the cortex, may indicate involvement of subcortical bilateral projections to the cortex in the generation of brain function changes, especially since the exposure of the thalamus was similar in both experiments (approx. 0.1 W/kg).  相似文献   

16.
The effects of night-time exposure to traffic noise (TN) or low frequency noise (LFN) on the cortisol awakening response and subjective sleep quality were determined. Twelve male subjects slept for five consecutive nights in a noise-sleep laboratory. After one night of acclimatisation and one reference night, subjects were exposed to either TN (35dB L(Aeq), 50dB L(Amax)) or LFN (40dB L(Aeq)) on alternating nights (with an additional reference night in between). Salivary free cortisol concentration was determined in saliva samples taken immediately at awakening and at three 15-minute intervals after awakening. The subjects completed questionnaires on mood and sleep quality. The awakening cortisol response on the reference nights showed a normal cortisol pattern. A significant interaction between night time exposure and time was found for the cortisol response upon awakening. The awakening cortisol response following exposure to LFN was attenuated at 30 minutes after awakening. Subjects took longer to fall asleep during exposure to LFN. Exposure to TN induced greater irritation. Cortisol levels at 30 minutes after awakening were related to "activity" and "pleasantness" in the morning after exposure to LFN. Cortisol levels 30 minutes after awakening were related to sleep quality after exposure to TN. This study thus showed that night time exposure to LFN may affect the cortisol response upon wake up and that lower cortisol levels after awakening were associated with subjective reports of lower sleep quality and mood.  相似文献   

17.
Nurses frequently care for sleepless elderly patients on bed rest in a hospital environment. Our previous study with young adults showed that bright light exposure during the daytime affected the induction of nocturnal deep sleep. The purpose of this study is aimed at finding whether similar research could be observed with hospitalized elderly patients. Seven patients (mean age 67; range 57-77 yrs, males 3: females 4) served as participants and their informed written consent was obtained. A fluorescent lamp fixed in the bed frame near the head of the patient was turned on at 10:00 h and off at 15:00 h each day for 1 week (BL). Moreover, each patient was required to stay near this light during this period. The patients lived in a room facing north, where the ambient light intensities ranged from 50 to 300 lx during the daytime. Their activities were continuously measured using an Actiwatch (model-AWL, Mini-Mitter, USA). Salivary samples were collected at midnight for the measurement of melatonin. The findings were compared between 2 days before BL exposure (baseline) and the last 2 days during BL exposure, respectively. The bright light exposure during the daytime prolonged "Time in Bed" (p < 0.05), increased "Immobile Minutes" (p < 0.05), and delayed "Get up Time" (p < 0.01). The average melatonin secretion at midnight in four patients increased from 7.5 +/- 2.6 pg/ml to 13.3 +/- 9.2 pg/ml. These findings suggest that diurnal bright light exposure for hospitalized elderly patients lying in bed under dark condition during the daytime may favor clinically the induction of nocturnal deep sleep. Attention should be given to the illumination conditions for elderly patients in hospitals to improve their impaired sleep.  相似文献   

18.
Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ~50% or ~150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the fluctuations in the energy state of the body.  相似文献   

19.
To systematically determine the effects of daytime exposure to sleep in darkness on human circadian phase, four groups of subjects participated in 4-day studies involving either no nap (control), a morning nap (0900-1500), an afternoon nap (1400-2000), or an evening nap (1900-0100) in darkness. Except during the scheduled sleep/dark periods, subjects remained awake under constant conditions, i.e., constant dim light exposure (36 lx), recumbence, and caloric intake. Blood samples were collected at 20-min intervals for 64 h to determine the onsets of nocturnal melatonin and thyrotropin secretion as markers of circadian phase before and after stimulus exposure. Sleep was polygraphically recorded. Exposure to sleep and darkness in the morning resulted in phase delays, whereas exposure in the evening resulted in phase advances relative to controls. Afternoon naps did not change circadian phase. These findings indicate that human circadian phase is dependent on the timing of darkness and/or sleep exposure and that strategies to treat circadian misalignment should consider not only the timing and intensity of light, but also the timing of darkness and/or sleep.  相似文献   

20.
The aim of this study was to evaluate daytime and nighttime sleep, as well as daytime and nighttime sleepiness of professional shift-working bus drivers. Thirty-two licensed bus drivers were assessed by nocturnal and diurnal polysomnography (PSG) recording and multiple sleep latency testing (MSLT) sessions. Sleep length was shorter and sleep efficiency reduced during daytime sleep compared with nighttime sleep. Thirty-eight percent of the drivers had indices of obstructive apnea and hypopnea syndrome (>5/h sleep) during nighttime and daytime sleep; more drivers snored during daytime than nighttime sleep (50% vs. 35%, p < 0.05), and 38% of the drivers evidenced periodic leg movements. The MSLT revealed that 42 and 38% of the bus drivers met the criteria for sleepiness when the test was conducted during the day and night, respectively. The daytime as compared to nighttime sleep of shift-working bus drivers was shorter and more fragmented and was associated in many with evidence of excessive sleepiness. Respiratory disorder was a common finding among the professional shift-working bus drivers. All these sleep deficiencies may adversely affect on the job driving performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号