首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 926 毫秒
1.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

2.
Alam N  Gourinath S  Dey S  Srinivasan A  Singh TP 《Biochemistry》2001,40(14):4229-4233
The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.  相似文献   

3.
A new wheat dimeric alpha-amylase inhibitor, designated WDAI-3, has been characterized. WDAI-3 is a homodimeric protein active against alpha-amylase from human saliva and from the insect Tenebrio molitor, but inactive against that from pig pancreas or against trypsin. Its N-terminal amino acid sequence is closer to those of the wheat dimeric inhibitors 0.19 and 0.53 (89-91% identical positions in 44 residues) than to that of the monomeric 0.28 inhibitor (69% identical positions). Iha-B1-2, the gene encoding the new inhibitor, is located in the short arm of chromosome 3B, where it is part of an intrachromosomal gene duplication that also codes for the 0.53 inhibitor.  相似文献   

4.
A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of biospecific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary α-amylase. The bifunctional α-amylase/trypsin inhibitor was characterized by a narrow specificity for other α-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against α-amylase. The inhibitor—α-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of α-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.  相似文献   

5.
Barley CM-proteins are a group of at least five salt-soluble components (CMa-e) that can be selectively extracted from endosperm with chloroform/methanol mixtures. N-terminal sequences of proteins CMa, CMb and CMc have been determined and found to be homologous to those previously determined for CMd and CMe, an observation which confirms that their structural genes are members of a dispersed multi-gene family. The purified CM-proteins were tested against trypsin and against alpha-amylases from saliva, pancreas, Aspergillus oryzae, Tenebrio molitor and barley. Besides CMe, which was known to be a trypsin inhibitor, CMc also showed antitrypsin activity, whereas CMa was specifically active against the alpha-amylase from T. molitor and no inhibitory activity was found for proteins CMb and CMd. The evolutionary implications of these findings are discussed.  相似文献   

6.
E R Wilcox  J R Whitaker 《Biochemistry》1984,23(8):1783-1791
Bovine pancreatic alpha-amylase binds 1 mol of acarbose (a carbohydrate alpha-amylase inhibitor) per mol at the active site and also binds acarbose nonspecifically. The red kidney bean alpha-amylase inhibitor-bovine pancreatic alpha-amylase complex retained nonspecific binding for acarbose only. Binding of p-nitrophenyl alpha-D-maltoside to the final complex of red kidney bean alpha-amylase inhibitor and bovine pancreatic alpha-amylase has a beta Ks (Ks') value that is 3.4-fold greater than the Ks (16 mM) of alpha-amylase for p-nitrophenyl alpha-D-maltoside alone. The initial complex of alpha-amylase and inhibitor apparently hydrolyzes this substrate as rapidly as alpha-amylase alone. The complex retains affinity for substrates and competitive inhibitors, which, when present in high concentrations, cause dissociation of the complex. Maltose (0.5 M), a competitive inhibitor of alpha-amylase, caused dissociation of the red kidney bean alpha-amylase inhibitor--alpha-amylase complex. Interaction between red kidney bean (Phaseolus vulgaris) alpha-amylase inhibitor and porcine pancreatic alpha-amylase proceeds through two steps. The first step has a Keq of 3.1 X 10(-5) M. The second step (unimolecular; first order) has a forward rate constant of 3.05 min-1 at pH 6.9 and 30 degrees C. alpha-Amylase inhibitor combines with alpha-amylase, in the presence of p-nitrophenyl alpha-D-maltoside, noncompetitively. On the basis of the data presented, it is likely that alpha-amylase is inactivated by the alpha-amylase inhibitor through a conformational change. A kinetic model, in the presence and absence of substrate, is described for noncompetitive, slow, tight-binding inhibitors that proceed through two steps.  相似文献   

7.
Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz-type trypsin inhibitor family of the beta-trefoil fold proteins. Diverse approaches including site-directed mutagenesis, hybrid constructions, and crystallography have been used to characterise the structures and contact residues in the AMY2/BASI complex. The three-dimensional structure of the AMY2/BASI complex is characterised by a completely hydrated Ca2+ situated at the protein interface that connects the three catalytic carboxyl groups in AMY2 with side chains in BASI via water molecules. Using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), we have recently demonstrated Ca2+-modulated kinetics of the AMY2/BASI interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors.  相似文献   

8.
A crystalline protein-proteinase inhibitor has been isolated from seeds of Pinto bean (Phaseolus vulgaris cultvar. Pinto). It has an average molecular weight of 19 000 as estimated by gel filtration. This crystalline inhibitor is highly active against both bovine pancreatic trypsin and alpha-chymotrypsin. Complexes of both trypsin-inhibitor and alpha-chymotrypsin-inhibitor have been isolated. The inhibitor which was derived from the dissociated trypsin-inhibitor complex was only 62% as effective as the original compound against either enzyme. In contrast, the inhibitor obtained from alpha-chymotrypsin-inhibitor complex retained its full original inhibitory activity for trypsin, but only 25% of its original activity against alpha-chymotrypsin. The dissociated inhibitor from alpha-chymotrypsin-inhibitor compex, despite its full inhibitory activity, had been modified to such an extent that it could no longer form any precipitable complex with trypsin. The crystalline protein-proteinase inhibitor is not homogeneous and has been resolved into two distinct inhibitors in terms of their physical and chemical properties. These two inhibitors are designated as Pinto bean proteinase inhibitor I and II and their respective minimum molecular weights are 9100 and 10 000. They differ most strikingly in their amino acid composition in that inhibitor II is void of both valine and methionine.  相似文献   

9.
The primary inhibitor of plasmin in human plasma was purified by a four-step procedure involving fractional (NH(4))(2)SO(4) precipitation, ion-exchange chromatography on a column of DEAE-Sepharose CL-6B and affinity chromatography on both a plasminogen-CH-Sepharose 4B column and a column of 6-aminohexanoic acid covalently coupled through the carboxylate function to AH-Sepharose 4B. No impurities in the final preparation could be detected when tested by immunoelectrophoresis against a range of specific antisera or against rabbit anti-human serum. On polyacrylamide-gel electrophoresis the inhibitor preparation showed a single band. The dissociation constant for the inhibitor-plasminogen complex was determined to be approx. 3mum at pH7.8. The reactions of the inhibitor with human plasmin and with bovine trypsin were studied. Comparison of the results obtained confirms the hypothesis previously presented, namely that the reaction of the inhibitor with plasmin involves at least two steps, the initial rapid formation of an enzyme-inhibitor complex followed by a slow irreversible transition to another complex. The results also indicate that the reaction of the inhibitor with trypsin involves just a single, irreversible step, so that this reaction seems to be less complicated than that of the inhibitor with plasmin. The ways in which 6-aminohexanoic acid influences the reactions were studied. The same value for the dissociation constant (approx. 26mum) for 6-aminohexanoic acid is obtained for both its effect on the reaction of the inhibitor with trypsin and for competitive inhibition of trypsin. The inhibitory effect of 6-aminohexanoic acid thus seems to be due to its blocking of the active site of trypsin. In contrast with this, the inhibitory effects of l-lysine and 6-aminohexanoic acid on the inhibitor-plasmin reaction occur at concentrations much too low to affect the active site of plasmin. The possible dependence of the reaction of the inhibitor with plasmin on a second site(s) on plasmin is discussed.  相似文献   

10.
The trypsin inhibitor fraction from cowpea (Vigna unguiculata) has been purified and characterized. Although the total trypsin inhibitor as purified by affinity chromatography on immobilised trypsin was shown to be heterogeneous by gel electrophoresis and isoelectric focusing as well as by function, it was relatively homogeneous in MW (ca 17 000) on gel filtration. The total trypsin inhibitor was divided into inhibitors active against trypsin only and active against trypsin and chymotrypsin by affinity chromatography on immobilised chymotrypsin. The ‘trypsin-only’ inhibitor was the major component of the total trypsin inhibitor. It was shown by isoelectric focusing and gel electrophoresis to contain several isoinhibitors. Determination of the combining weight of this inhibitor and investigation of the complexes formed with trypsin by gel filtration indicated the presence of two protease binding sites per inhibitor molecule. The chymotrypsin/trypsin inhibitor was also shown to be composed of several isoinhibitors. On the basis of gel electrophoresis and gel filtration in dissociating and non-dissociating media both inhibitors were considered to be dimeric molecules with the subunits linked by disulphide bonds; this implies that the ‘trypsin-only’ inhibitor has one binding site per subunit.  相似文献   

11.
A trypsin and chymotrypsin inhibitor was partially purified from Bauhenia purpurea seeds and separated from a second inhibitor by Ecteola cellulose chromatography. The factor inhibited bovine trypsin and chymotrypsin as well as pronase trypsin and elastase. It formed a complex with trypsin and with chymotrypsin, but a ternary complex could not be detected. Differences were detected in the effect on trypsin and on chymotrypsin, although one enzyme interfered with the inhibition of the other. The results obtained point to two active centers on the inhibitor for the trypsin and chymotrypsin inhibition such that the one cannot complex with the inhibitor after this inhibitor had complexed with the other.  相似文献   

12.
The native and oxidized alpha-amylase inhibitor Z-2685, isolated from the culture medium of Streptomyces parvullus FH-1641, and its overlapping cleavage products were degraded by the automatic Edman technique. Digestion was carried out with pepsin, thermolysin and trypsin. The alpha-amylase inhibitor is a polypeptide consisting of 76 amino acids with a molecular mass of 8 129 Da. With the exception of methionine and lysine, all naturally occurring amino acids are present. It is interesting that identical regions exist, in particular the sequence Trp-Arg-Tyr common to all four known microbial inhibitor sequences. We believe that the side chains of these three amino acids are important for interacting with the alpha-amylase molecule. Computer alignment enabled us to show a possible binding region in the alpha-amylase molecule which might react with the inhibitors. Furthermore, homology exists to mammalian alpha-amylases. This result is explained by the assumption that the inhibitor evolved from a duplication of the original gene of the enzyme.  相似文献   

13.
Hog pancreas alpha-amylase (alpha-1-4-glucan-glucan hydrolase, E.C. 3.2.1.1) lost its structural calcium by action of EDTA at 20 degrees C. Enzymatic activity experimented a decrease whereas a big increase in proteolytic susceptibility to bovine pancreas trypsin (E.C. 3.4.4.4) was shown. Native alpha-amylase had an activity of 2,730 mg maltose/min X mg enzyme and a Km of 0.222% amylose, the activity of calcium depleted amylase being of 1,640 mg maltose/min X mg enzyme and Km 0.571% amylose. Simple methods for evaluating proteolytic susceptibility of alpha-amylase micro-amounts against trypsin action, and for the measurement of alpha-amylase activity in polyacrylamide rod gels were also described.  相似文献   

14.
Trypsin inhibitor was purified from the hepatopancreas of squid (Todarodes pacificus). The final inhibitor preparation was nearly homogeneous by SDS-PAGE with an estimated molecular weight of approximately 6300. The squid trypsin inhibitor was acid- and heat-stable, and active against trypsins from the pyloric ceca of starfish (Asterias amurensis) and saury (Cololabis saira) and porcine pancreatic trypsin. Amino acid composition of the squid trypsin inhibitor was compared with other invertebrate trypsin inhibitors. The squid trypsin inhibitor inhibited the autolysis of walleye pollock (Theragra chalcogramma) myofibrillar proteins.  相似文献   

15.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

16.
A roselle (Hibiscus sabdariffa Linn.) tea extract was found to have high inhibitory activity against porcine pancreatic alpha-amylase. Hibiscus acid and its 6-methyl ester were respectively isolated as active principles from the 50% methanol and acetone extracts of roselle tea. The activity of each isolate was compared to that of structurally related citric acid, a previously known inhibitor of fungal alpha-amylase.  相似文献   

17.
1. Bovine (Bos taurus) trypsin and trypsin activity in rat (Rattus norvegicus) pancreatic extract were inhibited by soybean trypsin inhibitor and by bovine basic pancreatic and colostrum inhibitors. 2. Bovine alpha-chymotrypsin was inhibited by soybean and bovine basic pancreatic inhibitors but only weakly by colostrum inhibitor. 3. Chymotrypsin activity in rat pancreatic extract was due to at least three different components against all of which the inhibitors were largely ineffective. 4. It is concluded that bovine colostrum inhibitor has a more limited inhibition spectrum than the phylogenetically related basic pancreatic inhibitor which, in turn, is less active against rat than against bovine enzymes.  相似文献   

18.
Several pests are capable of decreasing crop production causing severe economical and social losses. Aiming to find novel molecules that could impede the digestion process of different pests, a screening of alpha-amylase and trypsin-like proteinase inhibitors was carried out in Prosopis juliflora, showing the presence of both in dry seeds. Furthermore, a novel trypsin inhibitor, with molecular mass of 13,292 Da, was purified showing remarkable in vitro activity against T. castaneum and C. maculatus.  相似文献   

19.
Serine protease inhibitors in extracts from three North American leeches, Nephelopsis obscura, Erpobdella punctata and Hemopis marmorata have been separated by anion exchange chromatography and the activity pattern against human granulocyte elastase and porcine chymotrypsin and trypsin determined. All three leech species contained a major peak with anti-trypsin activity, but Hemopis was unique in that the trypsin inhibitor was equally active against chymotrypsin. Nephelopsis was rich in anti-elastase activity of two types, one which was also active against chymotrypsin, and one which was a specific elastase inhibitor. Erpobdella contained inhibitors against elastase and chymotrypsin but with major activity against the latter.  相似文献   

20.
The production of extracellular alpha-amylase and protease by protoplasts of Bacillus amyloliquefaciens has been achieved. The production of enzymically active protease was totally dependent on a high concentration of either Mg2+, Ca2+, or spermidine, but production of active alpha-amylase was not. This cation dependence of protease production was seen immediately upon addition of lysozyme to intact cells. The cations could prevent the inactivation of protease and alter the cytoplasmic membrane configuration of protoplasts. Production of active alpha-amylase and protease by protoplasts was totally inhibited by proteolytic enzymes such as trypsin, alpha-chymotrypsin, or the organism's purified extracellular protease. The evidence suggests that these degradative enzymes act specifically on the emerging polypeptide of the extracellular enzyme and that the polypeptide emerges in a conformation different from that of the native molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号