首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Masting is the intermittent and synchronized production of a large amount of flower and seed in plant populations. This population-level phenomenon is caused by individual-level variability in reproduction and its synchrony between individuals. The variability at the individual level is induced by synchronized reproduction between branches within an individual because a tree is an assemblage of branches that are considered as semiautonomous units. However, there have been no empirical studies that quantify the degree of reproductive synchrony at the branch level within the same tree in masting species. Here, we evaluated the reproductive synchrony within individuals by monitoring flowering dynamics and expression level of a flowering-time gene at the branch-level in a typical masting species, Fagus crenata Blume. The 4-year census showed that the branch-level gene expression was highly variable between years and was strongly synchronized between branches. The branch-level synchrony in flowering-time gene expression was followed by coherent flowering cycle at the whole individual. To examine the causal relationship between gene expression and climatic factors, we performed a nonlinear statistical analysis called convergent cross-mapping using the time course data of gene expression and environmental variables. Our results indicated that the observed gene expression pattern was well cross-mapped by temperature or precipitation. However, this cross-mapping skill was lower than that of randomly generated seasonal dynamics, implying a combination of internal and external environmental signals is more likely to regulate gene expression dynamics in F. crenata. Our results provide the first empirical evidence that synchronized expression of a flowering-time gene between branches underlies integrated flowering behavior at the individual level.  相似文献   

2.
Masting is usually considered as a population phenomenon but it results from individuals?? reproductive patterns. Studies of individual patterns of seed production and their synchrony are essential to an understanding of the mechanisms of masting. The aim of this study was to find the relationship between population and individual levels of masting. We examined individuals?? contribution to masting, considering their endogenous cycles, interannual variability and associated weather cues, as well as inter-individual synchrony of fruit production. We studied masting of Sorbus aucuparia L., which in Europe is one of the most common trees bearing fleshy fruits and is strongly affected by a specialized seed predator. The data are 11-year measurements of fruit production of 250 individuals distributed on a 27-ha area of subalpine forest in the Western Carpathians (Poland). Population- and individual-level interannual variability of fruit production was moderate. Synchrony among individuals was relatively high for all years, but the trees were much less synchronized in heavy crop years than in years of low fruit production. Weak synchrony among trees for heavy production years suggests that the predator satiation hypothesis does not explain the observed masting behavior. Fruit production, both at individual and at population level, was highly correlated with weather conditions. However, the presence of masting cannot be fully explained by the resource-matching hypothesis either. We suggest that adverse weather conditions effectively limit fruit production, causing high inter-individual synchrony in low crop years, whereas the unsynchronized heavy crop years seem to have been affected by individually available resources.  相似文献   

3.
Many plant species show masting, intermittent and synchronized reproduction at population level. In the present paper, we review the resource-based model providing a theoretically plausible physiological mechanism underlying masting. In the model, a non-linear allocation of energy reserves is considered: plants accumulate photosynthate every year, produce flowers when the energy reserve level exceeds a threshold, and set seeds at a rate limited by pollen availability. The model predicted that individual plants alter their reproductive dynamics from annual to intermittent depending on how heavily the plant invests resource in reproduction. When fruit production is limited by the availability of outcross pollen, a plant population showed diverse reproductive behavior such as completely synchronized or desynchronized reproduction. Spatial scale of reproductive synchrony tended to be a few times larger than the range of direct pollen exchange. Impact of climatic fluctuation correlated at a large spatial scale was also investigated as an alternative synchronizing factor. The variation in annual productivity and the reproductive threshold induced from climatic fluctuation was accounted for by incorporating an additional term in the model. When plants show a 2 year reproductive cycle, highly synchronized reproduction at a regional scale was induced due to correlated environmental forcing, but reproductive synchrony with long intermast periods was realized only when pollen coupling and environmental forcing were at work. These results suggest that distance-dependent processes, such as pollen exchange between nearby trees, induce synchrony at a local scale and external environmental forcing correlated at geographically large scales works to strengthen and maintain such a synchrony.  相似文献   

4.
Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production (“masting breakdown”) which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship—correlation between tree size and viable seed production—has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand- and biogeographical-level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.  相似文献   

5.
Predator satiation resulting from interannual reproductive synchrony has been widely documented in masting plants, but how reproductive synchrony within a year influences seed escape is poorly understood. We evaluated whether the intra-annual reproductive synchrony of individual white spruce trees (Picea glauca) increased seed escape from their primary predispersal seed predator, North American red squirrels (Tamiasciurus hudsonicus). Trees with cones that matured synchronously relative to those of other trees within red squirrel territories were significantly more likely to escape squirrel predation in years with both low and superabundant levels of cone production, generating a significantly positive linear selection differential for increasing intra-annual reproductive synchrony. Thus, this masting plant escapes seed predation in numbers through interannual synchrony in seed production and in time through intra-annual synchrony of seed availability.  相似文献   

6.
Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.  相似文献   

7.
Many plant species exhibit variable and synchronized reproduction, or masting, but less is known of the spatial scale of synchrony, effects of climate, or differences between patterns of pollen and seed production. We monitored pollen and seed cone production for seven Pinus ponderosa populations (607 trees) separated by up to 28?km and 1,350?m in elevation in Boulder County, Colorado, USA for periods of 4?C31?years for a mean per site of 8.7?years for pollen and 12.1 for seed cone production. We also analyzed climate data and a published dataset on 21?years of seed production for an eighth population (Manitou) 100?km away. Individual trees showed high inter-annual variation in reproduction. Synchrony was high within populations, but quickly became asynchronous among populations with a combination of increasing distance and elevational difference. Inter-annual variation in temperature and precipitation had differing influences on seed production for Boulder County and Manitou. We speculate that geographically variable effects of climate on reproduction arise from environmental heterogeneity and population genetic differentiation, which in turn result in localized synchrony. Although individual pines produce pollen and seed, only one-third of the covariation within trees was shared. As compared to seed cones, pollen had lower inter-annual variation at the level of the individual tree and was more synchronous. However, pollen and seed production were similar with respect to inter-annual variation at the population level, spatial scales of synchrony and associations with climate. Our results show that strong masting can occur at a localized scale, and that reproductive patterns can differ between pollen and seed cone production in a hermaphroditic plant.  相似文献   

8.
The mean-variance scaling relationship known as Taylor's power law has been well documented empirically over the past four decades but a general theoretical explanation for the phenomenon does not exist. Here we provide an explanation that relates empirical patterns of temporal mean-variance scaling to individual level reproductive behavior. Initially, we review the scaling behavior of population growth models to establish theoretical limits for the scaling exponent b that is in agreement with the empirically observed range (1≤b≤2). We go on to show that the degree of reproductive covariance among individuals determines the scaling exponent b. Independent reproduction results in an exponent of one, while completely correlated reproduction results in the upper limit of two. Intermediate exponents, which are common empirically, can be generated through the decay of reproductive covariance with increasing population size. Finally, we describe how the link between reproductive correlation and the scaling exponent provides a way to infer properties of individual-level reproductive behavior, such as the relative influence of demographic stochasticity, from a macroecological pattern.  相似文献   

9.
The past seven years have seen a revolution in understanding the causes of mast seeding In perennial plants. Before 1987, the two main theories were resource matching (i.e. plants vary their reproductive output to match variable resources) and predator satiation (i.e. losses to predators are reduced by varying the seed crop). Today, resource matching is restricted to a proximate role, and predator satiation is only one of many theories for the ultimate advantage of masting. Wind pollination, prediction of favourable years for seedling establishment, animal pollination, animal dispersal of fruits, high accessory costs of reproduction and large seed size have all been advanced as possible causes of masting. Of these, wind pollination, predator satiation and environmental prediction are important in a number of species, but the other theories have less support. In future, Important advances seem likely from quantifying synchrony within a population, and examining species with very constant reproduction between years.  相似文献   

10.
One hitherto intractable problem in studying mast seeding (synchronous intermittent heavy flowering by a population of perennial plants) is determining the relative roles of weather, plant reserves, and evolutionary selective pressures such as predator satiation. We parameterize a mechanistic resource-based model for mast seeding in Chionochloa pallens (Poaceae) using a long-term individually structured data set. Each plant's energy reserves were reconstructed using annual inputs (growing degree days), outputs (flowering), and a novel regression technique. This allowed the estimation of the parameters that control internal plant resource dynamics, and thereby allowed different models for masting to be tested against each other. Models based only on plant size, season degree days, and/or climatic cues (warm January temperatures) fail to reproduce the pattern of autocovariation in individual flowering and the high levels of flowering synchrony seen in the field. This shows that resource-matching or simple cue-based models cannot account for this example of mast seeding. In contrast, the resource-based model pulsed by a simple climate cue accurately describes both individual-level and population-level aspects of the data. The fitted resource-based model, in the absence of environmental forcing, has chaotic (but often statistically periodic) dynamics. Environmental forcing synchronizes individual reproduction, and the models predict highly variable seed production in close agreement with the data. An evolutionary model shows that the chaotic internal resource dynamics, as predicted by the fitted model, is selectively advantageous provided that adult mortality is low and seeds survive for more than 1 yr, both of which are true for C. pallens. Highly variable masting and chaotic dynamics appear to be advantageous in this case because they reduce seed losses to specialist seed predators, while balancing the costs of missed reproductive events.  相似文献   

11.
Predicting the consequences of climate change is a major challenge in ecology and wildlife management. While the impact of changes in climatic conditions on distribution ranges has been documented for many organisms, the consequences of changes in resource dynamics for species' overall performance have seldom been investigated. This study addresses this gap by identifying the factors shaping the reproductive synchrony of ungulates. In temporally-variable environments, reproductive phenology of individuals is a key determinant of fitness, with the timing of reproduction affecting their reproductive output and future performance. We used a satellite-based index of resource availability to explore how the level of seasonality and inter-annual variability in resource dynamics affect birth season length of ungulate populations. Contrary to what was previously thought, we found that both the degree of seasonal fluctuation in resource dynamics and inter-annual changes in resource availability influence the degree of birth synchrony within wild ungulate populations. Our results highlight how conclusions from previous interspecific analyses, which did not consider the existence of shared life-history among species, should be treated with caution. They also support the existence of a multi-faceted link between temporal variation in resource availability and breeding synchrony in terrestrial mammals, and increase our understanding of the mechanisms shaping reproductive synchrony in large herbivores, thus enhancing our ability to predict the potential impacts of climate change on biodiversity.  相似文献   

12.
Evolutionary selective forces, like predator satiation and pollination efficiency, are acknowledged to be major causes of masting (the variable, periodic and synchronic production of seeds in a population). However, a number of recent studies indicate that resources might also play an important role on shaping masting patterns. Dioecious masting species offer a privileged framework to study the role of resources on masting variation, since male and female plants often experience different reproductive costs and selective pressures. We followed masting and reproductive investment (RI) of the dioecious tree Juniperus thurifera in two populations along 10 years and studied the different response of males and females to experimentally increased water and nutrient availability in a third population. Juniperus thurifera females invested in reproduction three times more resources than males. Such disparity generated different resource‐use strategies in male and female trees. Tree‐ring growth and water use efficiency (WUE) confirmed that sexes differed in their resource investment temporal pattern, with males using current resources for reproduction and females using resources accumulated during longer periods. Watered and fertilized female trees presented significantly higher flowering reproductive investments than males and experienced an extraordinary mast‐flowering event. However, seeding RI and mast seeding were not affected by the treatment. This suggests that although resource availability affects the reproductive output of this species, there are other major forces regulating masting on J. thurifera. During 10 years, J. thurifera male and female trees presented high and low flowering years more or less synchronously. However, not all mast flowering episodes resulted in mast seeding, leading to masting uncoupling between flowering and seeding. Since flowering costs represent only 1% of females’ total reproductive investments, masting uncoupling could be a beneficial bet‐hedging strategy to maximize reproductive output in spite of unpredictable catastrophic events.  相似文献   

13.
Mast seeding, or masting, is the variable production of flowers, seeds, or fruit across years more or less synchronously by individuals within a population. A critical issue is the extent to which temporal variation in seed production over a collection of individuals can be viewed as arising from a combination of individual variation and synchrony among individuals. Studies of masting typically quantify such variation in terms of the coefficient of variation (CV). In this paper we examine mathematically how the population CV relates to the mean individual CV and synchrony, concluding that the relationship is a complex one which cannot isolate an overall measure of synchrony, and involves additional factors, principally the number of plants sampled and the mean productivity per plant. Our development suggests some simple approximate relationships of population CV to individual variability, synchrony and the number of individuals. These were found to fit quite well when applied to data from 59 studies which included seed production at the individual level.  相似文献   

14.
Mast seeding is a reproductive mode in plants characterized by intermittence and intra- or interspecific synchronization. Several mechanisms have been proposed to explain the evolution of mast seeding, but the relative importance of each is still unclear due to the complex interactions among the various factors involved, i.e., the two components of masting (intermittence and synchronization), two potential advantages of masting (enhancement of fertility and survival), and the intensities of interactions among individuals through enhancement effects. Several masting studies have claimed that independent selective forces may operate to drive the evolution of intermittence and synchrony, although a theoretical framework for the action of these independent selective forces has not yet been established. In the present study, we investigated the relationships among these factors by analyzing a mathematical model and conducting computer simulations. We found that intense interactions among plant individuals, through the enhancement of fertility or survival, promoted synchronous reproduction while concomitantly suppressing evolution of intermittence. We also demonstrated that enhancement of either fertility or survivorship alone may be insufficient for the evolution of masting, whereas a combination of the two effects can significantly promote it. This suggested a complementary relationship between two well-known hypotheses for the origin of masting, namely, the pollen/pollinator hypothesis and the predator satiation hypothesis.  相似文献   

15.
Masting—temporally variable seed production with high spatial synchrony—is a pervasive strategy in wind‐pollinated trees that is hypothesized to be vulnerable to climate change due to its correlation with variability in abiotic conditions. Recent work suggests that aging may also have strong effects on seed production patterns of trees, but this potential confounding factor has not been considered in previous times series analysis of climate change effects. Using a 54 year dataset for seven dominant species in 17 forests across Poland, we used the proportion of seed‐producing trees (PST) to contrast the predictions of the climate change and aging hypotheses in Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Quercus petraea, and Quercus robur. Our results show that in all species, PST increased over time and that this change correlated most strongly with stand age, while the standardized precipitation–evapotranspiration index, a measure of drought, contributed to temporal trends in PST of F. sylvatica and Q. robur. Temporal variability of PST also increased over time in all species except P. sylvestris, while trends in temporal autocorrelation and among‐stand synchrony reflect species‐specific masting strategies. Our results suggest a pivotal role of plant ontogeny in driving not only the extent but also variability and synchrony of reproduction in temperate forest trees. In a time of increasing forest regrowth in Europe, we therefore call for increased attention to demographic effects such as aging on plant reproductive behavior, particularly in studies examining global change effects using long‐term time series data.  相似文献   

16.
The predator satiation hypothesis states that synchronous periodic production of seeds is an adaptive strategy evolved to reduce the pressure of seed predators. The seed production pattern is crucial to the predator satiation hypothesis, but there are few studies documenting the success of individuals that are in synchrony and out of synchrony with the whole population. This study is based on long-term data on seed production of Sorbus aucuparia and specialised pre-dispersal seed predation by Argyresthia conjugella, in a subalpine spruce forest in the Western Carpathians (Poland). At the population level, we tested whether functional and numerical responses of predators to the variation of fruit production operate. At the individual level, we tested whether individuals with higher interannual variability in their own seed crops and higher synchrony with the population have higher percentages of uninfested fruits. The intensity of pre-dispersal seed predation was high (average 70 %; range 19–100 %). There were both functional and numerical responses of predators to the variation of fruit production at the population level. We found that individuals that were expected to be preferred under seed predator pressure had higher reproductive success. With increasing synchrony of fruit production between individual trees and the population, the percentage of infested fruits decreased. There was also a negative relationship between the interannual variation in individual fruit production and the percentage of infested fruits. These results confirm selection for individuals with a masting strategy. However, the population does not seem well adapted to strong seed predation pressure and we suggest that this may be a result of prolonged diapause of A. conjugella.  相似文献   

17.
By analyzing 296 published and unpublished data sets describing annual variation in seed output by 144 species of woody plants, this article addresses the following questions. Do plant species naturally fall into distinct groups corresponding to masting and nonmasting habits? Do plant populations generally exhibit significant bimodality in annual seed output? Are there significant relationships between annual variability in seed production and pollination and seed dispersal modes, as predicted from economy of scale considerations? We failed to identify distinct groups of species with contrasting levels of annual variability in seed output but did find evidence that most polycarpic woody plants seem to adhere to alternating supra-annual schedules consisting of either high or low reproduction years. Seed production was weakly more variable among wind-pollinated taxa than animal-pollinated ones. Plants dispersed by mutualistic frugivores were less variable than those dispersed by either inanimate means or animals that predominantly behave as seed predators. We conclude that there are no objective reasons to perpetuate the concept of mast fruiting in the ecological literature as a shorthand to designate a distinct biological phenomenon. Associations between supra-annual variability in seed output and pollination and seed dispersal methods suggest the existence of important reproductive correlates that demand further investigation.  相似文献   

18.
Although masting in Southeast Asia is characterized by the interspecific synchronization of reproduction, little is known about the variation in regeneration strategies among sympatric tree species during major masting events. Herein, we examined the hypothesis that non-abundant species achieve greater seed survival per seed production at the pre- and post-dispersal stages by synchronizing reproduction with abundant species. During the masting event from May to September 2010, we installed seed traps in a primary forest plot of the Deramakot Forest Reserve, Borneo. To identify the possible causes of post-dispersal seed mortality, we conducted a seed-sowing experiment from September 2010 to July 2011 in a primary forest plot with high community-level dipterocarp seed density and two surrounding secondary forests with low seed densities. An abundant species (Shorea multiflora) produced more seeds than other species and exhibited a lower survival rate during the pre-dispersal stage. The ratio of aborted seeds was greater in species with greater seed production, while the ratio of seeds predated by insects was not, suggesting that resource limitations and/or greater inbreeding frequency may explain inefficient seed production. Interspecific variation was rarely observed for post-dispersal seed survival rates. Our study highlights the density-dependent variation in reproductive success between abundant and non-abundant dipterocarp species at the pre-dispersal stage. Non-abundant species achieved greater reproductive success by synchronizing reproduction with the masting of abundant species, which might be an important mechanism for sustainability of rare species populations.  相似文献   

19.
Masting, the synchronized and intermittent seed production by plant populations, provides highly variable food resources for specialist seed predators. Such a reproductive mode helps minimize seed losses through predator satiation and extinction of seed predator populations. The seed predators can buffer the resource variation through dispersal or extended diapause. We developed a spatially explicit resource-consumer model to understand the effect of masting on specialist seed predators. The masting dynamics were assumed to follow a resource-based model for plant reproduction, and the population dynamics of the predator were represented by a spatially extended Nicholson-Bailey model. The resultant model demonstrated that when host plants reproduce intermittently, seed predator populations go locally extinct, but global persistence of the predator is facilitated by dispersal or extended diapause. Global extinction of the predator resulted when the intermittent reproduction is highly synchronized among plants. An approximate invasion criterion for the predators showed that negative lag-1 autocorrelation in seeding reduces invasibility, and positive lag-1 cross-correlation enhances invasibility. Spatial synchronization in seeding at local scale caused by pollen coupling (or climate forcing) further prevented invasion of the predators. If the predators employed extended diapause, extremely high temporal variability in reproduction was required for plants to evade the predators.  相似文献   

20.
Masting consists of the synchronous highly variable seed production among years by a plant population. We studied spatiotemporal variation in fruit production in ten populations of Buxus balearica (six in the Balearic Islands and four in the Iberian Peninsula) from 2001 to 2004 in the light of masting. In some of them we assessed, by means of both observational and experimental data, the relationship between fruit production and some abiotic variables, the role of previous reproduction, the "pollination efficiency" and the "predator satiation" hypotheses, as well as the consequences for seedling density and survival. Fruit production in B. balearica showed substantial between-year variation, especially in island compared to mainland populations. Correlative evidence indicated that this variation and its geographic pattern were related to differences between regions in rainfall variability, cost of reproduction and the degree of ambophily. We found no indication of predator satiation. However, experimental tests failed to support many of our results, namely a negative effect of previous reproduction on future flowering in island populations and lower pollen limitation with increasing flower production. We therefore warn against exclusive reliance on correlations when testing hypotheses related to masting. In addition, seedling recruitment increased after some episodes of high fruit production but probably additional factors had a role in recruitment, suggesting that mast events not always translate into increased reproductive success. Although a limited time series only allows considering B. balearica as showing 'putative' masting, weather and pollination-related processes are good candidates for further exploration of fruiting patterns and processes at a large spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号