首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
[3H]gamma-aminobutyric acid (GABA) was taken up by cultured embryonic retina cells during the initial stages of cell differentiation. The accumulated GABA was released in the bathing medium and a transient increase in the efflux of GABA was observed when cultures were pulse-stimulated (2 min) with 0.1 mM L-glutamate but not with D-glutamate. The EC50 for L-glutamate to evoke [3H]GABA release was approximately 15 microM. This value is close to the Km for high-affinity uptake of L-glutamate by retina cells. When Na+ ions were replaced by Li+ ions, L-glutamate-induced release of GABA was abolished. Moreover, L-[14C]glutamate uptake by retina cells was significantly reduced when NaCl was replaced by LiCl in the incubation medium. L-Glutamate elicited release of GABA was Ca2+ independent, and was observed when Ca2+ was replaced by Co2+ or when Mg2+ ions were increased to 10 mM concentration. D-Aspartate, which is taken up by the same high-affinity uptake mechanism as L-glutamate, induced an increase in [3H]GABA efflux comparable to L-glutamate. The addition of unlabeled GABA to the medium also promoted the release of accumulated [3H]GABA. However, GABA was twofold less effective than L-glutamate in eliciting [3H]GABA release. The addition of both GABA and L-glutamate to the incubation medium indicated that [3H]GABA efflux due to L-glutamate and GABA was additive. L-Aspartate also promoted an increase in the efflux of [3H]GABA accumulated by retina cells. However, L-aspartate effect was significantly decreased in the absence of Ca2+ or when Na+ ions were replaced by Li+. Our results indicate that at least three releasable pools of GABA are present in the chick embryo retina cells: (a) a GABA-promoted GABA release-homoexchange, (b) a Ca2+-dependent L-aspartate-promoted release, and (c) a Ca2+-independent, Na+-dependent L-glutamate-evoked release. In addition, our data strongly suggest that the L-glutamate-promoted GABA release is due to a process of exchange of L-glutamate with GABA, which may play a fundamental role in the fine control of the excitability of local circuits in the retina.  相似文献   

2.
We characterized swelling of rat cultured astrocytes induced by L-glutamate and its analogues. Among L-glutamate receptor agonists, L-glutamate, L-aspartate, L-cysteic acid, DL-homocysteic acid, quisqualate and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD) increased astrocytic intracellular volume (3H-OMG space), while kainate, and N-methyl-D-aspartate did not. Threo-beta-hydroxyaspartate (TBHA), D-aspartate and L-trans-pyrrolidine-2,4-dicarboxylic acid, high-affinity substrates for Na+-dependent L-glutamate transporters, increased astrocytic 3H-OMG space. L-Glutamate (0.5 mM) increased astrocytic 3H-OMG space to 300% of control in 40-60 min. The increase in 3H-OMG space by 1 mM TBHA was comparable to the L-glutamate-induced one. After a 10 min-exposure to 0.5 mM L-glutamate, astrocytic 3H-OMG space was further increased to 200% even in the absence of L-glutamate. Astrocytes transiently exposed to L-glutamate did not increase their cell volume in K+-free medium and in the presence of 1 mM ouabain, a Na+-K+ ATPase inhibitor. The increase after a transient exposure was also observed by a treatment of 1 mM TBHA, but not by 0.5 mM quisqualate. These results suggest that the volume increases after a transient treatment are mediated by activation of Na+-dependent L-glutamate transporter.  相似文献   

3.
G E Fagg  B Riederer  A Matus 《Life sciences》1984,34(18):1739-1745
The regulatory effects of Na+ on C1-/Ca2+-dependent and C1-/Ca2+-independent L-glutamate binding sites were examined. In Tris-C1-/Ca2+ buffer, the binding of L-[3H]-glutamate to rat brain synaptic membranes was 5-fold higher than in Tris-acetate buffer. Low concentrations of Na+ (less than 5 mM) markedly depressed L-glutamate binding when assayed in Tris-C1/Ca2+ buffer, and this effect was attenuated by the selective blocker of C1-/Ca2+-dependent binding sites, DL-2-amino-4-phosphonobutyrate (APB). Scatchard analyses indicated that the effect of Na+ was due to a decrease in the number of C1-/Ca2+-dependent binding sites with no change in affinity. In Tris-acetate buffer, low concentrations of Na+ had little effect on L-glutamate binding. Dose-response curves for the inhibition of L-glutamate binding by DL-APB indicated a predominant high-affinity (Ki 5-10 microM) inhibitory component in Tris-C1-/Ca2+ buffer, but mainly a low-affinity component (Ki 1-2 mM) in Tris-acetate buffer and in Tris-C1-/Ca2+ buffer containing Na+. These data indicate that low concentrations of Na+ regulate specifically the C1-/Ca2+-dependent, APB-sensitive class of L-glutamate binding sites.  相似文献   

4.
Concentrations of mRNA coding for the opioid peptide precursor proenkephalin A (mRNAENK) were measured in primary cultures of bovine adrenal chromaffin cells maintained in serum-free medium. Using a sensitive solution hybridization assay, an increase in mRNAENK levels from 45 to 300% above control with K+ (10-20 mM), Ba2+ (1 mM) and veratridine (5 microM) was found. The highest increase (300% above control) was obtained with the Na+ channel agonist veratridine. This effect was nearly abolished in the presence of the Na+ channel antagonist tetrodotoxin (TTX) (1 microM). Moreover, TTX partially inhibited the increase in mRNAENK levels caused by K+ (20 mM) depolarization (from 185 to 130% of control), but had no effect on the stimulation by Ba2+ (1 mM). The Ca2+ channel antagonists D600 (50 microM) verapamil (50 microM) and Co2+ (1 mM) inhibited the responses to either K+, Ba2+ or veratridine, whereas the Ca2+ channel agonist Bay K 8644 (0.1 microM) potentiated the effect of 20 mM K+ from 185 to 230% of control. The K+-induced increase in the mRNAENK levels was associated with an increase of immunoreactive proenkephalin A-derived peptides in both tissue and medium, indicating an enhanced production of opioid peptides. These results suggest that membrane depolarization may play an important role in the regulation of proenkephalin A gene expression in bovine adrenal chromaffin cells. It may represent a mode by which substances acting directly on Na+ or Ca2+ channels may modulate the regulation of proenkephalin A mRNA biosynthesis and opioid peptide production.  相似文献   

5.
1. Caffeine (35-70 mM) elicited contractions of Aplysia buccal muscle El. In a Ca2+-free medium, in which ACh-elicited contractions rapidly fail, caffeine elicited contractions of approximately the same size as in normal medium. 2. 5-HT (10(-8) M and 10(-7) M) did not enhance caffeine-elicited contractions. 3. Lower concentrations (1-10 mM) of caffeine inhibited ACh-elicited contractions. Caffeine (7 mM) reduced the contraction by 80%. 4. Caffeine (7 mM) reduced ACh-elicited depolarization by 60%. 5. Caffeine (7 mM) increased 45Ca2+ influx into Aplysia buccal muscle I5. The stimulation of influx of 45Ca2+ by 10(-3) M ACh was non-additive with the stimulation caused by caffeine, and 7 mM caffeine reduced the influx caused by 10(-3) M ACh.  相似文献   

6.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Escherichia coli became more acid tolerant following incubation for 60 min in a medium containing L-glutamate at pH 7.0, 7.5 or 8.5. Several agents, including cAMP, NaCl, sucrose, SDS and DOC, prevented tolerance appearing if present with L-glutamate. Lesions in cysB, hns, fur, himA and relA, which frequently affect pH responses, failed to prevent L-glutamate-induced acid tolerance but a lesion in L-glutamate decarboxylase abolished the response. Induction of acid tolerance by L-glutamate was associated with the accumulation in the growth medium of a protein (or proteins) which was able to convert pH 7.0-grown cultures to acid tolerance, and the original L-glutamate-induced tolerance response was dependent on this component(s). Acid tolerance was also induced by L-aspartate at pH 7.0 and induction of such tolerance was dependent on an extracellular protein (or proteins). The L-glutamate and L-aspartate acid tolerance induction processes are further examples of a number of stress tolerance responses which differ from most inductions in that extracellular components, including extracellular sensors, are required.  相似文献   

8.
Varying ionic composition of outher medium and applying specific agents the role of fast and slow systems of entering currents in the accommodation of cats ventricular fibres has been studied. In potential region close to the level of resting potential (membrane depolarization no larger than 20-30mv), accomodation mainly depends on fast sodium currents. It is inhibited with a rise of this current (akonitin 0.1--1 mg) and, on the contrary, it increases when it gets weaker (novacain 2--5 mM). In the region of more positive potentials (membrane depolarization more than by 30 mv) the accommodation is mainly determined by the slow NA--Ca-systems of channels. The agents which strengthen NA--Ca--current (Si2+--5mM, Ca2+--10mM, Ba2+--0.1 mM) reduce the accommodation in the activation region of the Na--Ca--system. The agents which weaken the slow current (Mn2+--3 mM, isoptin--2+5 mg/l, inderal--2 mg/l) produce an opposite effect.  相似文献   

9.
Measurements of free cystolic Ca2+ ([Ca2+]i) and Ba2+ ([Ba2+]i) concentrations with Fura 2 were used to identify and characterize the properties of a depolarization-activated Ca2+ and Ba2+ entry in the plasma membrane of osteoblast-like cells. The presence of this pathway was demonstrated in two osteoblastic cell lines, UMR-106 and MC3T3-E1 and osteoblasts isolated from rat long bone and rat neonatal calvariae. Subsequent characterization of the pathway was performed in the osteosarcoma cell line UMR-106. Depolarization of the cells with high medium K+ was followed by an increase in [Ca2+]i which was dependent on medium Ca2+. Ba2+ ions depolarized the cells and were transported by this pathway. Mg2+ ions interfered with Ca2+ and Ba2+ entry. At 140 mM KCl and 1 mM MgCl2, the pathway could be saturated with Ca2+ or Ba2+. The apparent affinity for Ca2+ was 0.78 mM and for Ba2+ 1.82 mM. Ca2+ or Ba2+ entry into the cells was blocked by low concentrations of nicardipine, diltiazem, verapamil, and La3+. In the absence of an increase in [Ca2+]i or [Ba2+]i, the pathway inactivated within about 5 min after depolarization. When [Ca2+]i or [Ba2+]i was allowed to increase, the pathway inactivated within about 20 s. These properties suggest that Ca2+ and Ba2+ entry are mediated by an L-type, depolarization-activated Ca2+ channel in osteoblasts. The activity of these channels changes little with an increase or decrease in cell volume. Thus, it is concluded that these pathways do not provide the Ca2+ entry pathway required for initiation of volume decrease by osteoblasts.  相似文献   

10.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

11.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

12.
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells.  相似文献   

13.
Muscarinic receptor activation of phosphoinositide phospholipase C (PLC) has been examined in rat cerebellar granule cells under conditions that modify intracellular Ca2+ stores. Exposure of cells to medium devoid of Ca2+ for various times reduced carbachol stimulation of PLC with a substantial loss (88%) seen at 30 min. A progressive recovery of responses was observed following the reexposure of cells to Ca2+-containing medium (1.3 mM). However, these changes did not appear to result exclusively from changes in the cytosolic Ca2+ concentration ([Ca2+]i), which decreased to a lower steady level (approximately 25 nM decrease in 1-3 min after extracellular omission) and rapidly returned (within 1 min) to control values when extracellular Ca2+ was restored. Only after loading of the intracellular Ca2+ stores through a transient 1-min depolarization of cerebellar granule cells with 40 mM KCl, followed by washing in nondepolarizing buffer, was carbachol able to mobilize intracellular Ca2+. However, the same treatment resulted in an 80% enhancement of carbachol activation of PLC. In other experiments, partial depletion of the Ca2+ stores by pretreatment of cells with thapsigargin and caffeine resulted in an inhibition (18 and 52%, respectively) of the PLC response. Furthermore, chelation of cytosolic Ca2+ with BAPTA/AM did not influence muscarinic activation of PLC in either the control or predepolarized cells. These conditions, however, inhibited both the increase in [Ca2+]i and the PLC activation elicited by 40 mM KCl and abolished carbachol-induced intracellular Ca2+ release in predepolarized cells. Overall, these results suggest that muscarinic receptor activation of PLC in cerebellar granule cells can be modulated by changes in the loading state of the Ca2+ stores.  相似文献   

14.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

15.
V J Balcar 《FEBS letters》1992,300(3):203-207
Uptake of 1 microM [3H]L-glutamate by cultured 3T3 fibroblasts was strongly dependent on extracellular Na+; it was reduced by elevated concentrations of K+ (60 mM) but it was not influenced by variations in the concentration of Ca2+ (0-9.6 mM). D- and L-Asparate, D- and L-threo-3-hydroxyaspartate DL-threo-3-methylaspartate and a few other glutamate derivatives and analogues inhibited the uptake but several close analogues of L-glutamate (including D-glutamate) had no effect, implying that the uptake system is highly structurally selective. The recently identified inhibitor of glutamate uptake in synaptosomal preparations, L-trans-pyrrolidine-2,4-dicarboxylate, was also among the inhibitors. Apparent Km of the uptake was found to be less than 10 microM. The present observations indicate that Na(+)-dependent 'high-affinity' uptake of L-glutamate may appear in structures which are apparently unrelated to glutamatergic synaptic transmission in the CNS.  相似文献   

16.
In experiments carried out with the use of the radioactive label (45Ca2+) on suspension of the rat uterus myocytes processed by digitonin solution (0.1 mg/ml), influence of spermine and cyclosporin A on Mg2+, ATP-dependent Ca2+ transport in mitochondria at different Mg2+ concentration were investigated. Ca2+ accumulation in mitochondria was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). It has been shown, that spermine (1 mM) stimulates Mg2+, ATP-dependent Ca2+ accumulation in mitochondria irrespective of Mg2+ concentration (3 or 7 mM) in the incubation medium. At the same time cyclosporin A (5 microM) effects on Ca2+ accumulation in mitochondria depend on Mg2+ concentration in the incubation medium: at 3 mM Mg2+ the stimulating effect was observed, and at 7 mM Mg2+ - the inhibitory one. In conditions which led to the increase of nonspecific mitochondrial permeability and, accordingly, to dissipation of electrochemical potential (it was reached by 5 min. preincubation of myocytes suspension in the medium that contained 10 microM Ca2+, 2 mM phosphate and 3 or 7 mM Mg2+, but not ATP) significant inhibition of Mg2+, ATP-dependent Ca2+ accumulation in mitochondria was observed. The inhibition to the greater degree was observed when medium ATP and Mg2+ were absent simultaneously in the preincubation. Thus the quality of spermine effects on Ca2+ accumulation was kept: stimulation in the presence both of 3 mM and 7 mM Mg2+. Ca2+ accumulation did not reach the control level when 3 mM Mg2+ and 1 mM spermine was present and ATP absent in the preincubation medium. However, in the presence of 7 mM Mg2+ and 1 mM spermine practically full restoration (up to a control level) of Ca2+ accumulation was observed. At the same time with other things being equal such restoration was not observed at simultaneous absence of ATP and Mg2+ in the preincubation medium. The quality of cyclosporin A effects on Ca2+ accumulation in mitochondria was also kept: stimulation - in the presence of 3 mM Mg2+, inhibition - in the presence of 7 mM Mg2+ in the preincubation medium. And, at last, in the presence of cyclosporin A irrespective of the fact which preincubation medium was used, Ca2+ accumulation level practically did not depend on Mg2+ concentration.  相似文献   

17.
Wang Y  Li X  Duan H  Fulton TR  Eu JP  Meissner G 《Cell calcium》2009,45(1):29-37
Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10mM KCl) by 20-25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 microM 4-chloro-m-cresol, 10mM caffeine, 400 microM UTP, or 1 microM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins' mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes.  相似文献   

18.
19.
Smooth muscle cells were isolated from estrogenized rat myometrium by collagenase digestion. Electron microscopic examination and measurement of cell lengths by image-splitting micrometry were carried out after fixation with acrolein. Mean lengths of cells before and after isolation were 81.7 and 66.9 micron, respectively. Responses of cells were compared with contractions of isolated strips recorded isometrically. Effects of carbachol and KCl were examined in 2 mM Ca, 2 mM Ca + 4 mM EGTA, and 2 mM Ca + 10(-8) M nitrendipine solution. Carbachol and KCl produced concentration-dependent shortening of isolated cells maximal at 30 s after addition. The concentrations of carbachol required to produce shortenings were about 100-fold less than those required to produce isometric contractions; but no major difference was observed in the concentration dependence of cell shortening and isometric contraction produced by potassium-induced depolarization. In 2 mM Ca solution, there was a phasic response, followed by a tonic response such that more than 50% of maximum cell shortening was maintained for 10 min. However, in 2 mM Ca + 4 mM EGTA or 10(-8) M nitrendipine, the tonic contraction was abolished and cells rapidly relaxed after 30 s. If carbachol was added to cells after varying times in the EGTA-containing solution, the ability to initiate a contraction declined exponentially with a half-time of 160 s. Effects of depolarization by KCl were examined in 2 mM Ca plus nitrendipine and 2 mM Ca + 4 mM EGTA solution. Shortening occurred in 2 mM Ca solution by depolarization but not if nitrendipine was added. Though shortening was not observed in 2 mM Ca + 4 mM EGTA solution by KCl, subsequent addition of carbachol induced shortening. These results suggested that there was an intracellular Ca store site from which Ca was released by carbachol and which was not affected by depolarization in the absence of external Ca. No evidence was obtained that the contraction persists in Ca2+-free medium in isolated cells, which is in agreement with previous findings in small muscle strips in which only a similar transient response was obtained.  相似文献   

20.
The roles of K+, Ca2+, and Na+ ions in the mechanism of gonadotropin releasing hormone (GnRH) action on frog (Rana pipiens) hemipituitaries were studied using an in vitro superfusion system. The effects of elevated K+ alone or in combination with Ca2+-depleted medium, tetrodotoxin (TTX), or with 100 ng/ml GnRH were examined. The involvement of K+ was also studied indirectly through the use of tetraethyl ammonium chloride (TEA). The importance of Ca2+ was established by the loss of responsiveness to GnRH in Ca2+-depleted medium, or in the presence of the Ca2+ competitor CoCl2. The absence of a major dependence of GnRH on Na+ was revealed by the continued gonadotropin secretion after addition of 1 microM TTX to medium containing GnRH or 36.3 mM KCl, or by replacement of NaCL with choline chloride. High (10 X normal) KCl (36.3 mM) stimulated gonadotropin--both LH and FSH--secretion, but the response was more gradual than for GnRH. The inclusion of TEA (to block K+ efflux) in medium with GnRH accentuated the effect of GnRH, and the effects of elevated (36.3 mM) KCl and 100 ng/ml GnRH (a relatively high dose) were additive. Responses to high K+, like GnRH, were abolished by removal of Ca2+ from the medium. Overall, the roles of K+, Ca2+, and Na+ ions in the mechanism of GnRH action are very similar between mammals and frogs; Ca2+ apparently serves a critical function in the mechanism of GnRH action, while Na+ appears not to be involved. K+ can induce gonadotropin secretion, but it is not clear that it plays a direct role in the mediation of the action of GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号