首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic studies have suggested that Y-family translesion DNA polymerase IV (DinB) performs error-prone recombination-directed replication (RDR) under conditions of stress due to its ability to promote mutations during double-strand break (DSB) repair in growth-limited E. coli cells. In recent studies we have demonstrated that pol IV is preferentially recruited to D-loop recombination intermediates at stress-induced concentrations and is highly mutagenic during RDR in vitro. These findings verify longstanding genetic data that have implicated pol IV in promoting stress-induced mutagenesis at D-loops. In this Extra View, we demonstrate the surprising finding that A-family pol I, which normally exhibits high-fidelity DNA synthesis, is highly error-prone at D-loops like pol IV. These findings indicate that DNA polymerases are intrinsically error-prone at RecA-mediated D-loops and suggest that auxiliary factors are necessary for suppressing mutations during RDR in non-stressed proliferating cells.  相似文献   

2.
3.
4.
Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer   总被引:11,自引:0,他引:11  
Xeroderma pigmentosum (XP) is a rare, autosomal recessive disease that is characterized by the extreme sensitivity of the skin to sunlight. Compared to normal individuals, XP patients have a more than 1000-fold increased risk of developing cancer on sun-exposed areas of the skin. Genetic and molecular analyses have revealed that the repair of ultraviolet (UV)-induced DNA damage is impaired in XP patients owing to mutations in genes that form part of a DNA-repair pathway known as nucleotide excision repair (NER). Two other diseases, Cockayne syndrome (CS) and the photosensitive form of trichothiodystrophy (TTD), are linked to a defect in the NER pathway. Strikingly, although CS and TTD patients are UV-sensitive, they do not develop skin cancer. The recently developed animal models that mimic the human phenotypes of XP, CS and TTD will contribute to a better understanding of the etiology of these diseases and the role of UV-induced DNA damage in the development of skin cancer.  相似文献   

5.
6.
Xeroderma pigmentosum complementation group XP-I withdrawn   总被引:6,自引:0,他引:6  
  相似文献   

7.
Xeroderma pigmentosum variant (XP-V) represents one of the most common forms of this cancer-prone DNA repair syndrome. Unlike classical XP cells, XP-V cells are normal in nucleotide excision repair but defective in post-replication repair. The precise molecular defect in XP-V is currently unknown, but it appears to be a protein involved in translesion synthesis. Here we established a sensitive assay system using an SV40 origin-based plasmid to detect XP-V complementation activity. Using this system, we isolated a protein from HeLa cells capable of complementing the defects in XP-V cell extracts. The protein displays novel DNA polymerase activity which replicates cyclobutane pyrimidine dimer-containing DNA templates. The XPV polymerase activity was dependent on MgCl2, sensitive to NEM, moderately sensitive to KCl, resistant to both aphidicolin and ddTTP, and not stimulated by PCNA. In glycerol density gradients, the activity co-sedimented with a 54 kDa polypeptide at 3.5S, indicating that the monomeric form of this polypeptide was responsible for the activity. The protein factor corrected the translesion defects of extracts from three XPV cell strains. Bypass DNA synthesis by the XP-V polymerase occurred only in the presence of dATP, indicating that it can incorporate only dATP to bypass a di-thymine lesion.  相似文献   

8.
The XPC-HR23B complex recognizes various helix-distorting lesions in DNA and initiates global genome nucleotide excision repair. Here we describe a novel functional interaction between XPC-HR23B and thymine DNA glycosylase (TDG), which initiates base excision repair (BER) of G/T mismatches generated by spontaneous deamination of 5-methylcytosine. XPC-HR23B stimulated TDG activity by promoting the release of TDG from abasic sites that result from the excision of mismatched T bases. In the presence of AP endonuclease (APE), XPC-HR23B had an additive effect on the enzymatic turnover of TDG without significantly inhibiting the subsequent action of APE. Our observations suggest that XPC-HR23B may participate in BER of G/T mismatches, thereby contributing to the suppression of spontaneous mutations that may be one of the contributory factors for the promotion of carcinogenesis in xeroderma pigmentosum genetic complementation group C patients.  相似文献   

9.
Xeroderma pigmentosum is an infrequently occurring disease characterized by premature solar skin degeneration owing to an inherent deficiency in the enzymatic process of excision repair of x-ray-induced DNA alterations. Currently, there are six known genetic forms of this disease. The presence or absence of central nervous system involvement is a manifestation of the heterogeneity of the disease. Survival beyond the third decade of life is unusual. The authors present a 46-year-old patient with proven xeroderma pigmentosum who manifests many characteristic features of this affliction and may be one of the oldest, if not the oldest, living survivor of this unusual disease.  相似文献   

10.
Nucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a central organizer and damage verifier in NER. How XPA reaches DNA lesions and how the protein is distributed in time and space in living cells are unknown. Here we studied XPA in vivo by using a cell line stably expressing physiological levels of functional XPA fused to green fluorescent protein and by applying quantitative fluorescence microscopy. The majority of XPA moves rapidly through the nucleoplasm with a diffusion rate different from those of other NER factors tested, arguing against a preassembled XPA-containing NER complex. DNA damage induced a transient ( approximately 5-min) immobilization of maximally 30% of XPA. Immobilization depends on XPC, indicating that XPA is not the initial lesion recognition protein in vivo. Moreover, loading of replication protein A on NER lesions was not dependent on XPA. Thus, XPA participates in NER by incorporation of free diffusing molecules in XPC-dependent NER-DNA complexes. This study supports a model for a rapid consecutive assembly of free NER factors, and a relatively slow simultaneous disassembly, after repair.  相似文献   

11.
Three models describing frameshift mutations are "classical" Streisinger slippage, proposed for repetitive DNA, and "misincorporatation misalignment" and "dNTP-stabilized misalignment," proposed for non-repetitive DNA. We distinguish between models using pre-steady state fluorescence kinetics to visualize transiently misaligned DNA intermediates and nucleotide incorporation products formed by DNA polymerases adept at making small frameshift mutations in vivo. Human polymerase (pol) mu catalyzes Streisinger slippage exclusively in repetitive DNA, requiring as little as a dinucleotide repeat. Escherichia coli pol IV uses dNTP-stabilized misalignment in identical repetitive DNA sequences, revealing that pol mu and pol IV use different mechanisms in repetitive DNA to achieve the same mutational end point. In non-repeat sequences, pol mu switches to dNTP-stabilized misalignment. pol beta generates -1 frameshifts in "long" repeats and base substitutions in "short" repeats. Thus, two polymerases can use two different frameshift mechanisms on identical sequences, whereas one polymerase can alternate between frameshift mechanisms to process different sequences.  相似文献   

12.
13.
Tang J  Chu G 《DNA Repair》2002,1(8):601-616
  相似文献   

14.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

15.
Using radioimmunoassays specific for (6-4) photoproducts and cyclobutane dimers, Xeroderma pigmentosum variant cells appear to have a normal capacity for the repair of each of these lesions. However, these assays measure an early stage in the repair pathway and we do not exclude the possibility that repair is not successfully completed following UV irradiation and excision of DNA photoproducts.  相似文献   

16.
Yamada K  Takezawa J  Ezaki O 《DNA Repair》2003,2(8):909-924
Patients with xeroderma pigmentosum variant (XP-V) have a higher risk to skin cancer and XP-V cells are extremely mutable by ultraviolet (UV). The defective gene encodes a DNA polymerase (Poleta) which catalyzed relatively accurate translesion synthesis past the cyclobutane dimer of UV-lesions instead of the replicative polymerase(s) that stalled just before the lesion. Pulse-chase studies have shown that translesion replication in XP-V cells is delayed, but does not completely cease. Taking these results together, error-prone polymerase(s) are plausively involved in the UV-mutagenesis in XP-V devoid of Poleta. However, less is known about the polymerase(s) in vivo. Using an alkaline sucrose density gradient centrifugation (ASDG) technique, translesion replication is detected in the two XP-V strains XP30RO and XP115LO. As reported by Lehmann et al. [Proc. Natl. Acad. Sci. U.S.A. 72 (1975): 219] in XP-V; (i) smaller replication products were accumulated after UV irradiation; (ii) the elongation of these products was delayed; (iii) the elongation was markedly inhibited by caffeine. XP-V cells UV-irradiated at mid-S phase were normally S-arrested, and no "override" by caffeine (i.e. abrogation of the S-checkpoint) was observed by flow cytometry, suggesting that caffeine does not act via cdc kinase here; (iv) butylphenyldeoxyguanosine (BuPGdR) inhibited elongation of replication products only in UV-irradiated XP-V cells; (v) dideoxycytidine or dideoxyinosine had no effect on this process in either normal or XP-V cells. Next, similar phenomena to UV (all of above i to v) were observed also in cisplatin-treated XP-V cells. Pol eta was indicated to participate in cisplatin-induced translesion replication in normal cells. Summing up the above results, the polymerase(s) which work in translesion replication in XP-V are probably BuPGdR-sensitive, insensitive to dideoxynucleotides and can bypass also cisplatin-lesions. To date, several polymerases capable of lesion-bypass synthesis have been isolated. The features presented here are quite useful for identifying the error-prone polymerase(s) involved in UV-mutagenesis.  相似文献   

17.
Two DNA endonuclease complexes have been isolated from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells which are active on DNA damaged with psoralen plus long wavelength ultraviolet radiation (UVA). In both normal and XPA cells, one endonuclease complex, pI 4.6, recognizes the psoralen cross-link and the other endonuclease complex, pI 7.6, recognizes the psoralen monoadduct. The levels of activity of these complexes from both normal and XPA cells are similar on damaged naked DNA. Kinetic analysis of assays using graduated concentrations of substrate revealed that selective activity of these endonuclease complexes on 8-MOP plus UVA treated DNA correlates with a reduction in Km of these complexes, indicating an increased affinity for, or rate of association with, damaged naked DNA. When the damaged substrates were reconstituted into core nucleosomes (without histone H1), both normal endonuclease complexes showed a 2.5-fold enhancement of activity, which correlated kinetically with a further increase in affinity, or rate of association (decreased Km), for this damaged nucleosomal substrate. This increase in activity and in affinity was reduced but not eliminated when histone H1 was present. By contrast, neither XPA endonuclease complex showed this enhanced activity on, or affinity for, damaged core nucleosomal DNA, and actually showed decreased activity, and affinity, when histone H1 was present. Introduction, via electroporation, of either of the normal complexes into 8-MOP plus UVA treated XPA cells in culture corrected their DNA-repair defect, further confirming the role of these complexes in the repair process.  相似文献   

18.
19.
Oncogenes capable of transforming 3T3-Vill cells were not detected in 'normal' Xeroderma pigmentosum (XP) fibroblasts but were detected in two out of six XP epitheliomas. Preliminary results concerning the transfection of 'normal' XP fibroblasts with activated ras genes seem to indicate that these cells are as resistant as the healthy controls to the transforming action of the group II oncogenes. However, after transfection with v-myb oncogene in XP fibroblasts several cellular clones have been isolated showing some new phenotypic characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号