首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We surveyed the molecular evolutionary characteristics of 11 nuclear genes from 10 conifer trees belonging to the Taxodioideae, the Cupressoideae, and the Sequoioideae. Comparisons of substitution rates among the lineages indicated that the synonymous substitution rates of the Cupressoideae lineage were higher than those of the Taxodioideae. This result parallels the pattern previously found in plastid genes. Likelihood-ratio tests showed that the nonsynonymous-synonymous rate ratio did not change significantly among lineages. In addition, after adjustments for lineage effects, the dispersion indices of synonymous and nonsynonymous substitutions were considerably reduced, and the latter was close to 1. These results indicated that the acceleration of evolutionary rates in the Cupressoideae lineage occurred in both the nuclear and plastid genomes, and that generally, this lineage effect affected synonymous and nonsynonymous substitutions similarly. We also investigated the relationship of synonymous substitution rates with the nonsynonymous substitution rate, base composition, and codon bias in each lineage. Synonymous substitution rates were positively correlated with nonsynonymous substitution rates and GC content at third codon positions, but synonymous substitution rates were not correlated with codon bias. Finally, we tested the possibility of positive selection at the protein level, using maximum likelihood models, assuming heterogeneous nonsynonymous-synonymous rate ratios among codon (amino acid) sites. Although we did not detect strong evidence of positively selected codon sites, the analysis suggested that significant variation in nonsynonymous-synonymous rate ratio exists among the sites. The most likely sites for action of positive selection were found in the ferredoxin gene, which is an important component of the apparatus for photosynthesis.  相似文献   

2.
Statistical methods for detecting molecular adaptation   总被引:2,自引:0,他引:2  
The past few years have seen the development of powerful statistical methods for detecting adaptive molecular evolution. These methods compare synonymous and nonsynonymous substitution rates in protein-coding genes, and regard a nonsynonymous rate elevated above the synonymous rate as evidence for darwinian selection. Numerous cases of molecular adaptation are being identified in various systems from viruses to humans. Although previous analyses averaging rates over sites and time have little power, recent methods designed to detect positive selection at individual sites and lineages have been successful. Here, we summarize recent statistical methods for detecting molecular adaptation, and discuss their limitations and possible improvements.  相似文献   

3.
A number of statistical tests have been proposed to detect positive Darwinian selection affecting a few amino acid sites in a protein, exemplified by an excess of nonsynonymous nucleotide substitutions. These tests are often more powerful than pairwise sequence comparison, which averages synonymous (d(S)) and nonsynonymous (d(N)) rates over the whole gene. In a recent study, however, Hughes AL and Friedman R (2005. Variation in the pattern of synonymous and nonsynonymous difference between two fungal genomes. Mol Bio Evol. 22: 1320-1324) argue that d(S) and d(N) are expected to fluctuate along the sequence by chance and that an excess of nonsynonymous differences in individual codons is no evidence for positive selection. The authors compared codons in protein-coding genes from the genomes of 2 yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus. They calculated the proportions of synonymous and nonsynonymous differences per site (p(S) and p(N)) in every codon and discovered that p(N) is often greater than p(S) and that among some codons p(S) and p(N) are negatively correlated. The authors argued that these results invalidate previous tests of codons under positive selection. Here I discuss several errors of statistics in the analysis of Hughes and Friedman, including confusion of statistics with parameters, arbitrary data filtering, and derivation of hypotheses from data. I also apply likelihood ratio tests of positive selection to the yeast data and illustrate empirically that Hughes and Friedman's criticisms on such tests are not valid.  相似文献   

4.
A model of DNA sequence evolution applicable to coding regions is presented. This represents the first evolutionary model that accounts for dependencies among nucleotides within a codon. The model uses the codon, as opposed to the nucleotide, as the unit of evolution, and is parameterized in terms of synonymous and nonsynonymous nucleotide substitution rates. One of the model's advantages over those used in methods for estimating synonymous and nonsynonymous substitution rates is that it completely corrects for multiple hits at a codon, rather than taking a parsimony approach and considering only pathways of minimum change between homologous codons. Likelihood-ratio versions of the relative-rate test are constructed and applied to data from the complete chloroplast DNA sequences of Oryza sativa, Nicotiana tabacum, and Marchantia polymorpha. Results of these tests confirm previous findings that substitution rates in the chloroplast genome are subject to both lineage-specific and locus-specific effects. Additionally, the new tests suggest tha the rate heterogeneity is due primarily to differences in nonsynonymous substitution rates. Simulations help confirm previous suggestions that silent sites are saturated, leaving no evidence of heterogeneity in synonymous substitution rates.   相似文献   

5.
Ford MJ 《Molecular ecology》2000,9(7):843-855
This paper describes DNA sequence variation within and among four populations of chinook salmon (Oncorhynchus tshawytscha) at the transferrin, somatolactin and p53 genes. Patterns of variation among salmon species at the transferrin gene have been hypothesized to be shaped by positive natural selection for new alleles because the rate of nonsynonymous substitution is significantly greater than the rate of synonymous substitution. The twin goals of this study were to determine if the history of selection among salmon species at the transferrin gene is also reflected in patterns of intraspecific variation in chinook salmon, and to look for evidence of local adaptation at the transferrin gene by comparing patterns of nonsynonymous and synonymous variation among chinook salmon populations. The analyses presented here show that unlike patterns of variation between species, there is no evidence of greater differentiation among chinook salmon populations at nonsynonymous compared to synonymous sites. There is also no evidence of a reduction of within-species variation due to the hitchhiking effect at the transferrin gene, although in some populations nonsynonymous and synonymous derived mutations are both at higher frequencies than expected under a simple neutral model. Population size weighted selection coefficients (4Ns) that are consistent with both the inter and intraspecific data range from approximately 10 to approximately 235, and imply that between 1 and 40% of new nonsynonymous mutations at the transferrin gene have been beneficial.  相似文献   

6.
Comparison of the ratio of nonsynonymous to synonymous polymorphisms within species with the ratio of nonsynonymous to synonymous substitutions between species has been widely used as a supposed indicator of positive Darwinian selection, with the ratio of these 2 ratios being designated as a neutrality index (NI). Comparison of genome-wide polymorphism within 12 species of bacteria with divergence from an outgroup species showed substantial differences in NI among taxa. A low level of nonsynonymous polymorphism at a locus was the best predictor of NI < 1, rather than a high level of nonsynonymous substitution between species. Moreover, genes with NI < 1 showed a strong tendency toward the occurrence of rare nonsynonymous polymorphisms, as expected under the action of ongoing purifying selection. Thus, our results are more consistent with the hypothesis that a high relative rate of between-species nonsynonymous substitution reflects mainly the action of purifying selection within species to eliminate slightly deleterious mutations rather than positive selection between species. This conclusion is consistent with previous results highlighting an important role of slightly deleterious variants in bacterial evolution and suggests caution in the use of the McDonald-Kreitman test and related statistics as tests of positive selection.  相似文献   

7.
The use of codon substitution models to compare synonymous and nonsynonymous substitution rates is a widely used approach to detecting positive Darwinian selection affecting protein evolution. However, in several recent papers, Hughes and colleagues claim that codon-based likelihood-ratio tests (LRTs) are logically flawed as they lack prior hypotheses and fail to accommodate random fluctuations in synonymous and nonsynonymous substitutions Friedman and Hughes (2007) also used site-based LRTs to analyze 605 gene families consisting of human and mouse paralogues. They found that the outcome of the tests was largely determined by irrelevant factors such as the GC content at the third codon positions and the synonymous rate d(S), but not by the nonsynonymous rate d(N) or the d(N)/d(S) ratio, factors that should be related to selection. Here, we reanalyze those data. Contra Friedman and Hughes, we found that the test results are related to sequence length and the average d(N)/d(S) ratio. We examine the criticisms of Hughes and suggest that they are based on misunderstandings of the codon models and on statistical errors. Our analyses suggest that codon-based tests are useful tools for comparative analysis of genomic data sets.  相似文献   

8.
We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substitution rates among plant nuclear genes. Rates of synonymous substitution varied 13.8-fold among the duplicated gene pairs, but 90% of gene pairs differed by less than 2.6-fold. Average nonsynonymous rates were approximately fivefold lower than average synonymous rates; this rate difference is lower than that of previously studied nonplant lineages. The coefficient of variation of rates among genes was 0.65 for nonsynonymous rates and 0.44 for synonymous rates, indicating that synonymous and nonsynonymous rates vary among genes to roughly the same extent. The causes underlying rate variation were explored. Our analyses tentatively suggest an effect of physical location on synonymous substitution rates but no similar effect on nonsynonymous rates. Nonsynonymous substitution rates were negatively correlated with GC content at synonymous third codon positions, and synonymous substitution rates were negatively correlated with codon bias, as observed in other systems. Finally, the 242 gene pairs permitted investigation of the processes underlying divergence between paralogs. We found no evidence of positive selection, little evidence that paralogs evolve at different rates, and no evidence of differential codon usage or third position GC content.  相似文献   

9.
The selective forces acting on a protein-coding gene are commonly inferred using evolutionary codon models by contrasting the rate of nonsynonymous substitutions to the rate of synonymous substitutions. These models usually assume that the synonymous substitution rate, Ks, is homogenous across all sites, which is justified if synonymous sites are free from selection. However, a growing body of evidence indicates that the DNA and RNA levels of protein-coding genes are subject to varying degrees of selective constraints due to various biological functions encoded at these levels. In this paper, we develop evolutionary models that account for these layers of selection by allowing for both among-site variability of substitution rates at the DNA/RNA level (which leads to Ks variability among protein-coding sites) and among-site variability of substitution rates at the protein level (Ka variability). These models are constructed so that positive selection is either allowed or not. This enables statistical testing of positive selection when variability at the DNA/RNA substitution rate is accounted for. Using this methodology, we show that variability of the baseline DNA/RNA substitution rate is a widespread phenomenon in coding sequence data of mammalian genomes, most likely reflecting varying degrees of selection at the DNA and RNA levels. Additionally, we use simulations to examine the impact that accounting for the variability of the baseline DNA/RNA substitution rate has on the inference of positive selection. Our results show that ignoring this variability results in a high rate of erroneous positive-selection inference. Our newly developed model, which accounts for this variability, does not suffer from this problem and hence provides a likelihood framework for the inference of positive selection on a background of variability in the baseline DNA/RNA substitution rate.  相似文献   

10.
Nonrandom patterns associated with adaptively evolving genes can shed light on how selection and mutation produce rapid changes in sequences. I examine such patterns in two independent families of antimicrobial peptide genes: those in frogs, which are known to have evolved under positive selection, and those in flatfishes, which I show have also evolved under positive selection. I address two recently proposed hypotheses about the molecular evolution of antimicrobial peptide genes. The first is that the mature peptide region is replicated by an error-prone polymerase that increases the mutation rate and the transversion/transition ratio compared to the signal sequence of the same genes. The second is that mature peptides evolve in a coordinated fashion with their propieces, such that a change in net charge in one molecular region prompts an opposite change in charge in the other region. I test these hypotheses using alternative methods that minimize alignment errors, correct for phylogenetic nonindependence, reduce sequence saturation, and account for differing selection pressures on different regions of the gene. In both gene families I show that divergence at both synonymous and nonsynonymous sites within the mature peptide region is enhanced. However, in neither gene family is there evidence of an increased mutational transversion/transition ratio or coordinated evolution. My observations are consistent with either an elevated mutation rate in an adaptively evolving gene region or widespread selection on “silent” sites. These hypotheses challenge the assumption that mutations are random and can be measured by the synonymous substitution rate. [Reviewing Editor: Dr. Willie J. Swanson]  相似文献   

11.
Bielawski JP  Dunn KA  Yang Z 《Genetics》2000,156(3):1299-1308
Rates and patterns of synonymous and nonsynonymous substitutions have important implications for the origin and maintenance of mammalian isochores and the effectiveness of selection at synonymous sites. Previous studies of mammalian nuclear genes largely employed approximate methods to estimate rates of nonsynonymous and synonymous substitutions. Because these methods did not account for major features of DNA sequence evolution such as transition/transversion rate bias and unequal codon usage, they might not have produced reliable results. To evaluate the impact of the estimation method, we analyzed a sample of 82 nuclear genes from the mammalian orders Artiodactyla, Primates, and Rodentia using both approximate and maximum-likelihood methods. Maximum-likelihood analysis indicated that synonymous substitution rates were positively correlated with GC content at the third codon positions, but independent of nonsynonymous substitution rates. Approximate methods, however, indicated that synonymous substitution rates were independent of GC content at the third codon positions, but were positively correlated with nonsynonymous rates. Failure to properly account for transition/transversion rate bias and unequal codon usage appears to have caused substantial biases in approximate estimates of substitution rates.  相似文献   

12.
We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based "counting methods" that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral reconstructions, or sampling from ancestral reconstructions; (2) a random effects likelihood (REL) approach, which models variation in nonsynonymous and synonymous rates across sites according to a predefined distribution, with the selection pressure at an individual site inferred using an empirical Bayes approach; and (3) a fixed effects likelihood (FEL) method that directly estimates nonsynonymous and synonymous substitution rates at each site. All three methods incorporate flexible models of nucleotide substitution bias and variation in both nonsynonymous and synonymous substitution rates across sites, facilitating the comparison between the methods. We demonstrate that the results obtained using these approaches show broad agreement in levels of Type I and Type II error and in estimates of substitution rates. Counting methods are well suited for large alignments, for which there is high power to detect positive and negative selection, but appear to underestimate the substitution rate. A REL approach, which is more computationally intensive than counting methods, has higher power than counting methods to detect selection in data sets of intermediate size but may suffer from higher rates of false positives for small data sets. A FEL approach appears to capture the pattern of rate variation better than counting methods or random effects models, does not suffer from as many false positives as random effects models for data sets comprising few sequences, and can be efficiently parallelized. Our results suggest that previously reported differences between results obtained by counting methods and random effects models arise due to a combination of the conservative nature of counting-based methods, the failure of current random effects models to allow for variation in synonymous substitution rates, and the naive application of random effects models to extremely sparse data sets. We demonstrate our methods on sequence data from the human immunodeficiency virus type 1 env and pol genes and simulated alignments.  相似文献   

13.
Influenza A virus is one of the best-studied viruses and a model organism for the study of molecular evolution; in particular, much research has focused on detecting natural selection on influenza virus proteins. Here, we study the dynamics of the synonymous and nonsynonymous nucleotide composition of influenza A virus genes. In several genes, the nucleotide frequencies at synonymous positions drift away from the equilibria predicted from the synonymous substitution matrices. We investigate possible reasons for this unexpected behavior by fitting several regression models. Relaxation toward a mutation-selection equilibrium following a host jump fails to explain the dynamics of the synonymous nucleotide composition, even if we allow for slow temporal changes in the substitution matrix. Instead, we find that deep internal branches of the phylogeny show distinct patterns of nucleotide substitution and that these branches strongly influence the dynamics of nucleotide composition, suggesting that the observed trends are at least in part a result of natural selection acting on synonymous sites. Moreover, we find that the dynamics of the nucleotide composition at synonymous and nonsynonymous sites are highly correlated, providing evidence that even nonsynonymous sites can be influenced by selection pressure for nucleotide composition.  相似文献   

14.
It has been suggested that volatility, the proportion of mutations which change an amino acid, can be used to infer the level of natural selection acting upon a gene. This conjecture is supported by a correlation between volatility and the rate of nonsynonymous substitution (dN), or the ratio of nonsynonymous and synonymous substitution rates, in a variety of organisms. These organisms include yeast, in which the correlations are quite strong. Here we show that these correlations are a by-product of a correlation between synonymous codon bias toward translationally optimal codons and dN. Although this analysis suggests that volatility is not a good measure of the selection, we suggest that it might be possible to infer something about the level of natural selection, from a single genome sequence, using translational codon bias.  相似文献   

15.
Hughes AL  French JO 《Gene》2007,387(1-2):31-37
Patterns of nucleotide substitution at orthologous loci were examined between three genomes of Ehrlichia ruminantium, the causative agent of heartwater disease of ruminants. The most recent common ancestor of two genomes (Erwe and Erwo) belonging to the Welgevonden strain was estimated to have occurred 26,500-57,000 years ago, while the most recent common ancestor of these two genomes and the Erga genome (Gardel strain) was estimated to have occurred 2.1-4.7 million years ago. The search for genes showing extremely high values of the number of synonymous substitutions per site was used to identify genes involved in past homologous recombination. The most striking case involved the map1 gene, encoding major antigenic protein-1; evidence for homologous recombination is consistent with previous phylogenetic analysis of map1 alleles. At this and certain other loci, homologous recombination may have contributed to the evolution of host-pathogen interactions. In addition, comparison of the patterns of synonymous and nonsynonymous substitution provided evidence for positive selection favoring a high level of amino acid change between the Welgevonden and Gardel strains at a locus of unknown function (designated Erum4340 in the Erwo genome).  相似文献   

16.
Adaptive evolution of the IgA hinge region in primates   总被引:6,自引:0,他引:6  
IgA is a major component that prevents the penetration of pathogenic bacteria into mucosal surfaces. The IgA antibody is cleaved at the IgA hinge region with high specificity by IgA-specific proteases produced by several pathogenic bacteria. We conducted a genomic sequence analysis of the IgA genes of a wide spectrum of primates, including the first intron and second exon, which consist of the hinge region and the CH2 domain, to find evidence of positive selection. Because the hinge region is quite small, we combined the largest collection of sequences that could be clearly aligned and evaluated the total numbers of synonymous and nonsynonymous substitutions on the phylogenetic tree. The nonsynonymous to synonymous substitution ratio (d(N)/d(S) test) showed that hominoids, Old World monkeys, and New World monkeys have d(N)/d(S) ratios of 5.4, 6.3, and 4.2, respectively. Fisher's exact probability tests showed statistical significance for the Old World monkey. Because the substitution rates of the flanking sequences are more or less similar to the synonymous rates of the hinge region, these high values of d(N)/d(S) should be the result of positive selection at the hinge region. Combining the high sequence variability in each population and the highly accelerated nonsynonymous substitution rates in the hinge region, we conclude that this unusual IgA evolution is a molecular evidence of adaptive evolution possibly caused by the host-parasite relationship.  相似文献   

17.
18.
Evolution of duplicate genes in a tetraploid animal, Xenopus laevis   总被引:6,自引:1,他引:5  
To understand the evolution of duplicate genes, we compared rates of nucleotide substitution between 17 pairs of nonallelic duplicated genes in the tetraploid frog Xenopus laevis with rates between the orthologous loci of human and rodent. For all duplicated X. laevis genes, the number of synonymous substitutions per site (dS) was greater than the number of nonsynonymous substitutions per site (dN), indicating that these genes are subject to purifying selection. There was also a significant positive correlation (r = 0.915) between dN for the X. laevis genes and dN for the mammalian genes, suggesting that, at the amino acid level, the X. laevis genes and the mammalian genes are under similar constraints. Results of relative-rate tests showed nearly equal rates of nonsynonymous substitution in each copy of the X. laevis genes; apparently there are similar constraints on both copies. No correlation was found between dS for the X. laevis genes and dS for the mammalian genes. There was a significant positive correlation both between members of pairs of duplicated X. laevis genes (r = 0.951) and between human and rodent orthologues (r = 0.854) with respect to third- position G+C content but no such relationship between the X. laevis genes and either of their mammalian orthologues. The results indicate that both copies of a duplicate gene can be subject to purifying selection and thus support the hypothesis of selection against all genotypes containing a null allele at either of two duplicate loci.   相似文献   

19.
Surveys of nucleotide sequence polymorphism in Drosophila melanogaster and Drosophila simulans were performed at 2 interacting loci crucial for gametogenesis: bag-of-marbles (bam) and benign gonial cell neoplasm (bgcn). At the polymorphism level, both loci appear to be evolving under the expectations of the neutral theory. However, ratios of polymorphism and divergence for synonymous and nonsynonymous mutations depart significantly from neutral expectations for both loci consistent with a previous observation of positive selection at bam. The deviations suggest either an excess of synonymous polymorphisms or an excess of nonsynonymous fixations at both loci. Synonymous evolution appears to conform to neutrality at bam. At bgcn, there is evidence of positive selection affecting preferred synonymous mutations along the D. simulans lineage. However, there is also a significantly higher rate of nonsynonymous fixations at bgcn within D. simulans. Thus, the deviation from neutrality detected by the McDonald-Kreitman test at these 2 loci is likely due to the selective acceleration of nonsynonymous fixations. Differences in the pattern of amino acid fixations between these 2 interacting proteins suggest that the detected positive selection is not due to a simple model of coevolution.  相似文献   

20.
Synonymous and nonsynonymous rate variation in nuclear genes of mammals   总被引:34,自引:6,他引:28  
A maximum likelihood approach was used to estimate the synonymous and nonsynonymous substitution rates in 48 nuclear genes from primates, artiodactyls, and rodents. A codon-substitution model was assumed, which accounts for the genetic code structure, transition/transversion bias, and base frequency biases at codon positions. Likelihood ratio tests were applied to test the constancy of nonsynonymous to synonymous rate ratios among branches (evolutionary lineages). It is found that at 22 of the 48 nuclear loci examined, the nonsynonymous/synonymous rate ratio varies significantly across branches of the tree. The result provides strong evidence against a strictly neutral model of molecular evolution. Our likelihood estimates of synonymous and nonsynonymous rates differ considerably from previous results obtained from approximate pairwise sequence comparisons. The differences between the methods are explored by detailed analyses of data from several genes. Transition/transversion rate bias and codon frequency biases are found to have significant effects on the estimation of synonymous and nonsynonymous rates, and approximate methods do not adequately account for those factors. The likelihood approach is preferable, even for pairwise sequence comparison, because more-realistic models about the mutation and substitution processes can be incorporated in the analysis. Received: 17 May 1997 / Accepted: 28 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号