首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
裸子植物5S rRNA基因序列变异及二级结构特征   总被引:2,自引:0,他引:2  
在高等植物中,5SrRNA基因一级结构是高度保守的,二级结构也相当一致。通过比较18种裸子植物5SrRNA基因序列和二级结构变异,发现55%的核苷酸位点是可变的,这种变异有68%发生在干区(双链区),其中一些变异,如双链的互补性核苷酸替代,GU配对等能够维系5SrRNA二级结构的稳定性。环区相对保守,这与5SrRNA三级结构折叠或在转录翻译过程中蛋白质、RNA的结合相关。另外,首次报道了松属环E区核苷酸的变异性,这可能与其他区域的变异一样,是假基因造成的结果。5SrRNA基因信息可反映大分类群的系统进化关系,但由于基因长度短,信息量小,其在近缘种系统分类的应用受到限制。  相似文献   

2.
Fluorescence in situ hybridization (FISH) was employed on mitotic metaphase chromosome preparations of five Asian Pinus species: Pinus tabuliformis, Pinus yunnanensis, Pinus densata, Pinus massoniana and Pinus merkusii, using simultaneously DNA probes of the 18S rRNA gene and the 5S rRNA gene including the non-transcribed spacer sequences. The number and location of 18S rDNA sites varied markedly (5-10 pairs of strong signals) among the five pines. A maximum of 20 major 18S rDNA sites was observed in the diploid genome (2n = 24) of P. massoniana. The 5S rDNA FISH pattern was less variable, with one major site and one minor site commonly observed in each species. The differentiation of rDNA sites on chromosomes among the five pines correlates well with their phylogenic positions in Pinus as reconstructed from other molecular data. P. densata, a species of hybrid origin, resembles its parents ( P. tabuliformis and P. yunnanensis), including some components characteristic of each parent in its pattern. However, the species is unique, showing new features resulting possibly from recombination and genome reorganization.  相似文献   

3.
Patterns of intragenomic and interspecific variation of 5S rDNA in Pinus (Pinaceae) were studied by cloning and sequencing multiple 5S rDNA repeats from individual trees. Five pines, from both subgenera, Pinus and Strobus, were selected. The 5S rDNA repeat in pines has a conserved 120-base pair (bp) transcribed region and an intergenic spacer region of variable length (382-608 bp). The evolutionary rate in the spacer region is three- to sevenfold higher than in the genic region. We found substantial sequence divergence between the two subgenera. Intragenomic sequence heterogeneity was high for all species, and more than 86% of the clones within each individual were unique. The 5S gene tree revealed that different 5S repeats within individuals are polyphyletic, indicating that their ancestral divergence preceded the speciation events. The degrees of interspecific and intragenomic divergence among diploxylon pines are similar. The observed sequence patterns suggest that concerted evolution has been acting after the diversification of the two subgenera but very weak after the speciation of the four diploxylon pines. Sequence patterns in P. densata are consistent with hybrid origin. It had higher intragenomic diversity and maintained polymorphic copies of the parental types in addition to new and recombinant types unique to the hybrid.  相似文献   

4.
Two closely related spruces, Picea abies and Picea omorika, a Balkan paleoendemic species, often share habitats, yet never hybridize in nature. The present study adresses their characteristics such as nuclear DNA content, base composition, heterochromatin and rDNA pattern. The genome size of P. abies was 10% larger than that of P. omorika when assessed by flow cytometry, respectively 2C=37.2 pg and 33.8 pg; although when estimated as total chromosome length it was virtually the same. The heterochromatin Chromomycin-A (CMA)/ DAPI fluorochrome banding patterns of both P. abies and P. omorika are given here for the first time. Simultaneous FISH (fluorescent in situ hybridization) using 18S-26S and 5S rDNA probes revealed 16 18S rDNA sites in P. omorika, 12 18S rDNA sites in P. abies, and a single 5S rDNA locus in both species. The genomes have about 41% GC. The number and position of CMA/DAPI bands and rDNA loci provide good chromosome markers to clarify the karyotypes of the two species. Received: 18 October 2000 / 14 June 2001  相似文献   

5.
Fluorescence in situ hybridization (FISH) with 35S and 5S rDNA probes was used to characterize cytogenetically representatives of Artemisia subgenus Dracunculus and allied species and to explore their evolution following polyploidization. At the diploid level two rDNA loci were observed in most species belonging to the A. dracunculus complex, a pattern considered to be the ancestral state for diploid Artemisia. In contrast, representative species from the Eurasian grade which belong to the other major lineage of the subgenus had more heterogeneous rDNA profiles, with three to five loci at the diploid level. Divergent patterns of locus evolution were also detected in polyploids, with the number and distribution of rDNA loci broadly fitting the two main diversification lineages in the subgenus. In the polyploid complex of A. dracunculus, the number of rDNA loci was almost proportional to ploidy, although monoploid genome size was shown to decrease with increasing ploidy. However, in polyploids from the Eurasian grade we found a remarkable reduction in the number of rDNA sites, suggesting that these species might have experienced either a complete loss of loci or a significant reduction in the number of repeats following polyploid formation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013 , 171 , 655–666.  相似文献   

6.
Rapid expansion of microsatellite sequences in pines   总被引:9,自引:0,他引:9  
Microsatellite persistence time and evolutionary change was studied among five species of pines, which included a pair of closely related species (Pinus sylvestris and Pinus resinosa) in the subgenus Pinus, their relative Pinus radiata, and another closely related species pair (Pinus strobus and Pinus lambertiana) in the subgenus Strobus. The effective population sizes of these species are known to have ranged from the very small bottlenecks of P. resinosa to vast populations of P. sylvestris. This background allowed us to place the microsatellite evolution in a well-defined phylogenetic setting. Of 30 loci originating from P. strobus and P. radiata, we were able to consistently amplify 4 in most of the these pine species. These priming sites had been conserved for over 100 Myr. The four microsatellites were sequenced in the five species. Flanking sequences were compared to establish that the loci were orthologous. All microsatellites had persisted in these species, despite very different population sizes. We found a recent microsatellite duplication: a closely related pair of loci in P. strobus, where the other four species had just one locus. On two independent occasions, the repeat area of this same microsatellite (locus RPS 105a/b) had grown from a very low repeat number to 15 or 17 in the last 10-25 Myr. Other parts of the same compound microsatellite had remained virtually unchanged. Locus PR 4.6 is known to be polymorphic in both P. radiata and P. sylvestris, but the polymorphism in the two species is due to different motifs. The very large pine genomes are highly repetitive, and microsatellite loci also occur as gene families.  相似文献   

7.
The sequence divergence of chloroplast rbcL, matK, trnV intron, and rpl20-rps18 spacer regions was analyzed among 32 Pinus species and representatives of six other genera in Pinaceae. The total aligned sequence length is 3570 bp. Of the four sequences examined, matK evolved much faster than rbcL in Pinus and in other Pinaceae genera. The two noncoding regions did not show more divergence than the two coding regions, especially within each Pinus subgenus. Phylogenetic analyses based on these four sequences gave consistent results and strongly supported the monophyly hypothesis for the genus Pinus and its two recognized subgenera. Pinus krempfii, the two-flat-needle pine endemic to Vietnam, was placed in subgen. Strobus and showed closer affinity to subsect. Gerardianae. The ancient character of sect. Parrya is further confirmed. However, monophyly of the sect. Parrya is not supported by our data. Among the Eurasian pines of subgen. Pinus, Mediterranean pines formed one clade and the Asian members of subsect. Sylvestres formed another. The Himalayan P. roxburghii showed considerable divergence from all the other hard pines from both regions. Pinus merkusii was distinctly separated from all the Asian members of subsect. Sylvestres. The implications of our results for Pinus classification are discussed.  相似文献   

8.
Anchored reference loci provide a framework for comparative mapping. They are landmarks to denote conserved chromosomal segments, allowing the synthesis of genetic maps from multiple sources. We evaluated 90 expressed sequence tag polymorphisms (ESTPs) from loblolly pine (Pinus taeda L.) for this function. Primer sets were assayed for amplification and polymorphism in six pedigrees, representing two subgenera of Pinus and a distant member of the Pinaceae, Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). On average, 89% of primer sets amplified in four species of subgenus Pinus, 49% in one species of subgenus Strobus, and 22% in Douglas-fir. Polymorphisms were detected for 37-61% of the ESTPs within each pedigree. Comparative mapping in loblolly and slash pine (P. elliottii Englm.) revealed that ESTPs mapped to the same location. Disrupted synteny or significant disruptions in colinearity were not detected. Thirty-five ESTPs met criteria established for anchor loci. The majority of those that did not meet these criteria were excluded when map location was known in only a single species. Anchor loci provide a unifying tool for the community, facilitating the creation of a "generic" pine map and serving as a foundation for studies on genome organization and evolution.  相似文献   

9.
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.  相似文献   

10.
The localization of 18S ribosomal RNA genes (rDNA) by fluorescence in situ hybridization (FISH) had been performed for some species of Paeonla. However, the pattern of 18S rDNA loci among populations Is Indistinct. In the present study, we localized 18S rDNA loci on meiotic or mitotic chromosomes of six populations of Paeonla obovata Maxim. (Paeonlaceae). Different numbers of rDNA loci were found with different diploid (2n=10) populations, namely eight (Lushl and Mt. JIuhua populations), 10 (Mt. Talbal population), and seven (Mt. Guandl population), whereas tetraplold (2n=20) populations were all found with 16 loci. Aii rDNA loci were mapped near teiomeres of mitotic chromosomes and there was no chromosome with two loci. The present results show that molecular cytological polymorphlsm exists among P. obovata diploid populations, Indicating that structural variations occurred frequently during the evolutionary history of this species, accompanied with differentiation among populations.  相似文献   

11.
A 650-bp portion of the nuclear ribosomal DNA internal transcribed spacer region was sequenced in 47 species of Pinus, representing all recognized subsections of the genus, and 2 species of Picea and Cathaya as outgroups. Parsimony analyses of these length variable sequences were conducted using a manual alignment, 13 different automated alignments, elision of the automated alignments, and exclusion of all alignment ambiguous sites. High and moderately supported clades were consistently resolved across the different analyses, while poorly supported clades were inconsistently recovered. Comparison of the topologies highlights taxa of particularly problematic placement including Pinus nelsonii and P. aristata. Within subgenus Pinus, there is moderate support for the monophyly of a narrowly circumscribed subsect. Pinus (=subsect. Sylvestres) and strong support for a clade of North and Central American hard pines. The Himalayan P. roxburghii may be sister species to these "New World hard pines," which have two well-supported subgroups, subsect. Ponderosae and a clade of the remaining five subsections. The position of subsect. Contortae conflicts with its placement in a chloroplast DNA restriction site study. Within subgenus Strobus there is consistent support for the monophyly of a broadly circumscribed subsect. Strobi (including P. krempfii and a polyphyletic subsect. Cembrae) derived from a paraphyletic grade of the remaining soft pines. Relationships among subsects. Gerardianae, Cembroides, and Balfourianae are poorly resolved. Support for the monophyly of subgenus Pinus and subgenus Strobus is not consistently obtained.  相似文献   

12.
Silent mutation rate estimates for Pinus vary 50-fold, ranging from angiosperm-like to among the slowest reported for plants. These differences either reflect extraordinary genomic processes or inconsistent fossil calibration, and they have important consequences for population and biogeographical inferences. Here we estimate mutation rates from 4 Pinus species that represent the major lineages using 11 nuclear and 4 chloroplast loci. Calibration was tested at the divergence of Pinus subgenera with the oldest leaf fossil from subg. Strobus (Eocene; 45 MYA) or a recently published subg. Strobus wood fossil (Cretaceous; 85 MYA). These calibrations place the origin of Pinus 190-102 MYA and give absolute silent rate estimates of 0.70-1.31x10(-9) and 0.22-0.42x10(-9).site-1.year-1 for the nuclear and chloroplast genomes, respectively. These rates are approximately 4- to 20-fold slower than angiosperms, but unlike many previous estimates, they are more consistent with the high per-generation deleterious mutation rates observed in pines. Chronograms from nuclear and chloroplast genomes show that the divergence of subgenera accounts for about half of the time since Pinus diverged from Picea, with subsequent radiations occurring more recently. By extending the sampling to encompass the phylogenetic diversity of Pinus, we predict that most extant subsections diverged during the Miocene. Moreover, subsect. Australes, Ponderosae, and Contortae, containing over 50 extant species, radiated within a 5 Myr time span starting as recently as 18 MYA. An Eocene divergence of pine subgenera (using leaf fossils) does not conflict with fossil-based estimates of the Pinus-Picea split, but a Cretaceous divergence using wood fossils accommodates Oligocene fossils that may represent modern subsections. Because homoplasy and polarity of character states have not been tested for fossil pine assignments, the choice of fossil and calibration node represents a significant source of uncertainty. Based on several lines of evidence (including agreement with ages inferred using calibrations outside of Pinus), we conclude that the 85 MYA calibration at the divergence of pine subgenera provides a reasonable lower bound and that further refinements in age and mutation rate estimates will require a synthetic examination of pine fossil history.  相似文献   

13.
Cuticle micromorphology of the unusual Vietnamese pine, Pinus krempfii Lecomte, and three additional endemic southeast Asian species of Pinus L. (Pinaceae) is characterized for the first time. Taxa studied include (1) P. krempfii, typically placed in its own subgenus Ducampopinus (Chevalier) Ferré ex Little & Critchfield; (2) the endemic Vietnamese species Pinus dalatensis Ferré and (3) the southeast Asian species Pinus kwantungensis Chun ex Tsiang, both of subgenus Strobus; and (4) the widespread Asian species Pinus kesiya Royle ex Gordon of subgenus Pinus. The current and previous studies demonstrate that the genus Pinus and its subgenera are delimited by unique combinations of cuticular characters, although some of these characters may occur individually in other conifers. Cuticular micromorphology supports taxonomic assignment of P. krempfii to subgenus Strobus rather than to its own subgenus, a result that is also indicated by other anatomical studies and recent molecular studies. Sectional affinities of P. krempfii are usually with Parrya, subsection Krempfianae. An alternative classification of P. krempfii with subsection Gerardianae can be supported by micromorphological characters including broad cuticular bridges between stomata, details of the intercellular flanges of the epidermal cells, and usually an amphistomatic stomatal distribution. Features of other Asian species studied are consistent with their taxonomic assignments. The study demonstrates the utility of cuticle micromorphology to taxonomic delimitation within the family Pinaceae.  相似文献   

14.
To examine variation and taxonomic recognition of Pinus nigra (European black pine) at the intraspecific level, chromosomal distribution of 5S and 18S-5.8S-26S rDNA loci revealed by fluorescent in situ hybridisation (FISH) and fluorochrome banding with chromomycin A(3) and DAPI were analysed among allopatric populations belonging to different subspecies. Despite prevalent opinion on predominantly conserved and homogenous conifer karyotypes, several patterns were observed. Surprisingly, interstitial 18S rDNA loci and DAPI heterochromatin staining after FISH showed variations in distribution and localisation. Three subspecies shared a pattern with nine 18S rDNA loci (ssp. nigra, pallasiana and laricio) while ssp. dalmatica and salzmannii had eight rDNA loci. DAPI banding displayed two patterns, one with a high number of signals (ssp. nigra, pallasiana and dalmatica) and the other with a lower number of signals (ssp. salzmannii and laricio). We conclude that our results cannot provide proof for either classification scheme for the P. nigra complex, but rather demonstrate the variability of different heterochromatin fractions at the intraspecific level.  相似文献   

15.
Studying the genome structure of Epimedium has been hindered by the large genomes and uniform karyotypes. Consequently our understanding of the genome organization and evolutionary changes of Epimedium is extremely limited. In the present study, the 45S and 5S rDNA loci of 14 Epimedium species were physically mapped by double-probe FISH for the first time. Results showed the following: (1) Chromosomes I and II of all 14 species examined, except for E. shuichengense, hosted one pair of 45S rDNA sites, respectively. Most of the 45S rDNA sites gave clear signals and were positioned in the distal regions of the short arms. (2) All species studied of section Diphyllon were found to have one pair of 5S rDNA sites localized in the interstitial regions of the long arm of chromosome IV, and the two species of section Epimedium, E. alpinum and E. pubigerum, had two pairs of 5S rDNA sites localized in the interstitial regions of the long arm of chromosomes IV and V, respectively. (3) In section Diphyllon, all species of small flower taxa, except E. shuichengense, had three pairs of 45S rDNA sites, clearly more than species of big flower taxa, except E. davidii, with two pairs of 45S rDNA sites. Based on the 45S and 5S rDNA distribution patterns and other chromosomal morphological characteristics, six pairs of chromosomes can be unambiguously identified in all 14 Epimedium species. The stable differentiation in 45S and 5S rDNA FISH patterns between the two sections suggests that chromosomal rearrangements and transpositional events played a role in the splitting of the two sections, and section Diphyllon may be more primitive than section Epimedium. In the same way, big flower taxa may be more primitive than small flower taxa in section Diphyllon.  相似文献   

16.
BACKGROUND AND AIMS: The Brassicaceae family encompasses numerous species of great agronomic importance, belonging to such genera, as Brassica, Raphanus, Sinapis and Armoracia. Many of them are characterized by extensive intraspecific diversity of phenotypes. The present study focuses on the polymorphism of number, appearance and chromosomal localization of ribosomal DNA (rDNA) sites and, when possible, in relation to polyploidy, in 42 accessions of Brassica species and ten accessions of Diplotaxis, Eruca, Raphanus and Sinapis species. METHODS: Chromosomal localization of ribosomal DNA was carried out using dual colour fluorescence in situ hybridization (FISH) with 5S rDNA and 25S rDNA sequences as probes on enzymatically digested root-tip meristematic cells. KEY RESULTS: Loci for 5S and 18S-5.8S-25S rDNA were determined for the first time in six taxa, and previously unreported rDNA constellations were described in an additional 12 accessions. FISH revealed frequent polymorphism in number, appearance and chromosomal localization of both 5S and 25S rDNA sites. This phenomenon was most commonly observed in the A genome of Brassica, where it involves exclusively pericentromeric sites of 5S and 25S rRNA genes. The intraspecific polymorphism was between subspecies/varieties or within a variety or cultivar (i.e. interindividual). CONCLUSIONS: The number of rDNA sites can differ up to 5-fold in species with the same chromosome number. In addition to the eight previously reported chromosomal types with ribosomal genes, three new variant types are described. The extent of polymorphism is genome dependent. Comparing the A, B and C genomes revealed the highest rDNA polymorphism in the A genome. The loci carrying presumably inactive ribosomal RNA genes are particularly prone to polymorphism. It can also be concluded that there is no obvious polyploidization-related tendency to reduce the number of ribosomal DNA loci in the allotetraploid species, when compared with their putative diploid progenitors. The observed differences are rather caused by the prevailing polymorphism within the diploids and allotetraploids. This would make it difficult to predict expected numbers of rDNA loci in natural polyploids.  相似文献   

17.
Wild germplasms are often the only significant sources of useful traits for crops, such as soybean, that have limited genetic variability. Before these germplasms can be effectively manipulated they must be characterized at the cytological and molecular levels. Modern soybean probably arose through an ancient allotetraploid event and subsequent diploidization of the genome. However, wild Glycine species have not been intensively investigated for this ancient polyploidy. In this article we determined the number of both the 5S and 18S-28S rDNA sequences in various members of the genus Glycine using FISH. Our results distinctly establish the loss of a 5S rDNA locus from the "diploid" (2n = 40) species and the loss of two from the (2n = 80) polyploids of GLYCINE: A similar diploidization of the 18S-28S rDNA gene family has occurred in G. canescens, G. clandestina, G. soja, and G. max (L.) Merr. (2n = 40). Although of different genome types, G. tabacina and G. tomentella (2n = 80) both showed two major 18S-28S rDNA loci per haploid genome, in contrast to the four loci that would be expected in chromosomes that have undergone two doubling events in their evolutionary history. It is evident that the evolution of the subgenus Glycine is more complex than that represented in a simple diploid-doubled to tetraploid model.  相似文献   

18.
The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.  相似文献   

19.
Comparative investigation on the inner surfaces of needle cuticle of Pinus was made for 17 species and two varieties under SEM. It is shown that the differences in protrusions and depressions of the internal cuticle surfaces of needles in the genus are not remarkable. However, the features of intercellular flanges are rather distinct and three types can be distinguished. They are: (1) Subgen. Strobus (Sweet) Rehd (except Sect. Parrya) is of the Pinus koraiensis type; (2) Subgen. Pinus is of the P. tabulaeformis type; (3) Sect. Parrya Mayr of Subgen. Strobus (Sweet) Rehd is of the P. bungeana type. The character may provide taxonomy of the genus Pinus with a new piece of evidence. Based on the features mentioned above, together with many others, such as wood anatomy, warts of wood tracheids, bark structure, needle anatomy and cuticle structure as well as karyotypic analysis in Pinus, the author considers that division of Pinus into two subgeuera is natural and that separation of Sect. Parrya Mayr from Subgen. Strobus (Sweet) Rehd. and thesubsequent establishment of the subgenus Parrya of its own are also reasonable.  相似文献   

20.
We have analyzed the phylogenetic and genomic relationships in the genus Setaria Beauv. including diploid and tetraploid species, by means of the molecular diversity of the 5S rDNA spacer and chromosomal organization of the 5S and 18S-5.8S-25S rDNA genes. PCR amplification of the 5S rDNA sequences gave specific patterns. All the species studied here share a common band of about 340 bp. An additional band of an approximately 300-bp repeat unit was found for Setaria verticillata and the Chinese accessions of Setaria italica and Setaria viridis. An additional band of 450 bp was found in the sole species Setaria faberii. Fluorescent in situ hybridization was used for physical mapping of the 5S and 18S-5.8S-25S rDNA genes and showed that they are localized at two separate loci with no polymorphism of chromosome location among species. Two chromosome pairs carrying the 5S and 18S-5.8S-25S rDNA clusters can now be unambiguously identified using FISH. Phylogenetic trees based on the variation of the amplified 5S rDNA sequences showed a clear separation into four groups. The clustering was dependent on the genomic composition (genome A versus genome B) and confirmed the closest relationship of S. italica and S. viridis accessions from the same geographical region. Our results confirm previous hypotheses on the domestication centers of S. italica. They also show the wide difference between the A and B genomes, and even clarify the taxonomic position of S. verticillata. Received: 28 August 2000 / Accepted: 27 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号