首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel biobased aromatic triols (1,3,5-(9-hydroxynonyl)benzene and 1,3,5-(8-hydroxyoctyl)-2,4,6-octylbenzene) were synthesized through the transition-metal-catalyzed cyclotrimerization of two alkyne fatty acid methyl esters (methyl 10-undecynoate and methyl 9-octadecynoate) followed by the reduction of the ester groups to give terminal primary hydroxyl groups. A series of biobased segmented polyurethanes based on these triols, 1,4-butanediol as a chain extender and 4,4'-methylenebis(phenyl isocyanate) as a coupling agent, were synthesized. Samples were prepared with hard-segment contents up to 50%. The morphologies and thermal properties of these polyurethanes were studied by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis. Partial crystallinity and phase separation were detected in samples with hard-segment content of 50%.  相似文献   

2.
Kong X  Narine SS 《Biomacromolecules》2008,9(8):2221-2229
Sequential interpenetrating polymer networks (IPNs) were prepared using polyurethane produced from a canola oil based polyol with primary terminal functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were studied and compared to the IPNs made from commercial castor oil using dynamic mechanical analysis, differential scanning calorimetry, as well as tensile measurements. The morphology of the IPNs was investigated using scanning electron microscopy and transmission electron microscopy. The chemical diversity of the starting materials allowed the evaluation of the effects of dangling chains and graftings on the properties of the IPNs. The polymerization process of canola oil based IPNs was accelerated because of the utilization of polyol with primary functional groups, which efficiently lessened the effect of dangling chains and yielded a higher degree of phase mixing. The mechanical properties of canola oil based IPNs containing more than 75 wt % PMMA were comparable to the corresponding castor oil based IPNs; both were superior to those of the constituent polymers due to the finely divided rubber and plastic combination structures in these IPNs. However, when PMMA content was less than 65 wt %, canola oil based IPNs exhibited a typical mechanical behavior of rigid plastics, whereas castor oil based IPNs showed a typical mechanical behavior of soft rubber. It is proposed that these new IPN materials with high performance prepared from alternative renewable resources can prove to be valuable substitutes for existing materials in various applications.  相似文献   

3.
Interest in using nanoporous materials for sensing applications has increased. The present study reports a method of preparing well-ordered nanoporous gold arrays using a porous silicon (PSi) template. Gold nanolayer could be electrodeposited on the surface of the PSi template at low electrolysis currents in low concentration of chloroauric acid (HAuCl4) solution. Surface morphology characterizations and optical measurements revealed that a PSi-templated nanoporous gold (Au–PSi) array well replicated the nanoporous structure and retained the optical properties of PSi. Fourier transform reflectometric interference spectra showed that a characteristic blue-shifted effective optical thickness (EOT) was observed due to the low refractive index of the gold film. An optical DNA biosensor was then fabricated via the self-assembly of single-stranded DNA (ssDNA) with a specific sequence on the surface of Au–PSi. The attachment of ssDNA and its hybridization with target oligonucleotides (ODNs) persistently caused the blue shift of the EOT. Consequently, a relationship between the EOT shift and the ODN concentration was established. The mechanism of the optical response caused by DNA hybridization on the Au–PSi surface was qualitatively explained by the electromagnetic theory and electrochemical impedance spectroscopy (EIS). The lowest detection limit for target ODNs was estimated at around 10−14 mol L−1, when the baseline noise, a variation in the value of EOT is around 5 nm. The fabricated Au–PSi based optical biosensor has potential use in the discovery of new ODN drugs because it will be able to detect the binding event between ODNs and the target DNA.  相似文献   

4.
A new series of blue light‐emitting 2,4‐diphenylquinoline (DPQ) substituted blue light‐emitting organic phosphors namely, 2‐(4‐methoxy‐phenyl)‐4‐phenyl‐quinoline (OMe–DPQ), 2‐(4‐methyl‐phenyl)‐4‐phenylquinoline (M‐DPQ), and 2‐(4‐bromo‐phenyl)‐4‐phenylquinoline (Br‐DPQ) were synthesized by substituting methoxy, methyl and bromine at the 2‐para position of DPQ, respectively by Friedländer condensation of 2‐aminobenzophenone and corresponding acetophenone. The synthesized phosphors were characterized by different techniques, e.g., Fourier transform infra‐red (FTIR), differential scanning calorimeter (DSC), UV‐visible absorption and photoluminescence spectra. FTIR spectra confirms the presence of chemical groups such as C=O, NH, or OH in all the three synthesized chromophores. DSC studies show that these complexes have good thermal stability. Although they are low‐molecular‐weight organic compounds, they have the potential to improve the stability and operating lifetime of a device made out of these complexes. The synthesized polymeric compounds demonstrate a bright emission in the blue region in the wavelength range of 405–450 nm in solid state. Thus the attachment of methyl, methoxy and bromine substituents to the diphenyl quinoline ring in these phosphors results in colour tuning of the phosphorescence. An electroluminescence (EL) cell of Br‐DPQ phosphor was made and its EL behaviour was studied. A brightness–voltage characteristics curve of Br‐DPQ cell revealed that EL begins at 400 V and then the brightness increases exponentially with applied AC voltage, while current–voltage (I–V) characteristics revealed that the turn on voltage of the fabricated EL cell was 11 V. Hence this phosphor can be used as a promising blue light material for electroluminescent devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Plasmonics - In this work, porous silicon (PSi) sample was employed to increase the SERS efficiency for rapid detection of penicillins in spiked milk by developing Au nanoparticles (AuNPs)/PSi...  相似文献   

6.
We used a combination of optical and calorimetric techniques to investigate the incorporation of deoxythymidine --> deoxyuridine (dT --> dU) substitutions in the duplex and third strand of the parallel intramolecular triplex d(A(7)C(5)T(7)C(5)T(7)) (ATT). UV and differential scanning calorimetry melting experiments show that the incorporation of two substitutions yielded triplexes with lower thermal stability and lower unfolding enthalpies. The enthalpies decrease with an increase in salt concentration, indirectly yielding a heat capacity effect, and the magnitude of this effect was lower for the substituted triplexes. The combined results indicate that the destabilizing effect is due to a decrease in the level of stacking interactions. Furthermore, the minor groove ligand netropsin binds to the minor groove and to the hydrophobic groove, created by the double chain of thymine methyl groups in the major groove of these triplexes. Binding of netropsin to the minor groove yielded thermodynamic profiles similar to that of a DNA duplex with a similar sequence. However, and relative to ATT, binding of netropsin to the hydrophobic groove has a decreased binding affinity and lower binding enthalpy. This shows that the presence of uridine bases disrupts the hydrophobic groove and lowers its cooperativity toward ligand binding. The overall results suggest that the stabilizing effect of methyl groups may arise from the combination of both hydrophobic and electronic effects.  相似文献   

7.
Nanoscale porous silicon waveguide for label-free DNA sensing   总被引:3,自引:0,他引:3  
Porous silicon (PSi) is an excellent material for biosensing due to its large surface area and its capability for molecular size selectivity. In this work, we report the experimental demonstration of a label-free nanoscale PSi resonant waveguide biosensor. The PSi waveguide consists of pores with an average diameter of 20nm. DNA is attached inside the pores using standard amino-silane and glutaraldehyde chemistry. Molecular binding in the PSi is detected optically based on a shift of the waveguide resonance angle. The magnitude of the resonance shift is directly related to the quantity of biomolecules attached to the pore walls. The PSi waveguide sensor can selectively discriminate between complementary and non-complementary DNA. The advantages of the PSi waveguide biosensor include strong field confinement and a sharp resonance feature, which allow for high sensitivity measurements with a low detection limit. Simulations indicate that the sensor has a detection limit of 50nM DNA concentration or equivalently, 5pg/mm2.  相似文献   

8.
Wheat germ lipase (WGL) was inactivated by chemical modification of histidine, serine and carboxyl groups of Asp/Glu residues with diethyl pyrocarbonate (DEPC), phenyl methyl sulfonyl fluoride (PMSF) and 1-ethyl-3-(3-dimethylaminopropyl) carbodi-imide (EDC), respectively. Loss of activity of WGL was concentration dependent of the inhibitor and at 30 mM PMSF most of the activity of the enzyme was lost. The stoichiometry of modification showed one mole of histidine, serine and two moles of carboxyl groups modified per mole of protein. Kinetic measurements indicated that the inhibition of the enzyme was competitive in nature. The modified enzyme was further characterized by far UV-circular dichroic measurements of the secondary structure and fluorescence spectroscopy. PMSF-modified enzyme showed decreased thermal stability, whereas no change was observed in DEPC-modified enzyme as evidenced by differential scanning calorimetry. These studies indicate that histidine, serine and Asp/Glu residues play an important role in the catalytic function of WGL. The mechanism of loss of activity is due to minor conformational change in the microenvironment of the active site rather than the gross conformational change of the molecule itself.  相似文献   

9.
To clarify the changes in Si content of diatoms, the particulate silicon (PSi) concentration and total diatom volume (TDV) were determined in Lake Barato, Japan, from April to July 1998–2000. The soluble reactive silicon (SRSi) concentration decreased markedly with the rapid increase in TDV in May and June in all three years, although the value did not fall below that at which diatom growth might be limited. The proliferation of small discoid diatoms contributed to the decrease in SRSi concentration each year. The Si content of diatoms may not be constant as indicated by the changes in PSi:TDV ratio. The low PSi:TDV ratio and the fact that PSi concentration was lower than diatom PSi concentration (calculated from the volume of diatom species) accompanying the decrease in TDV suggests the possibility of a disturbance in the silicification in May and June 1999. These parameter changes accompanying the increase in TDV suggest that the silicification did not catch up with the cell division in early April 1998, early May 1999, and mid-June 2000. In addition, the PSi:TDV ratio increased rapidly and showed large fluctuations in July 1998 and 1999. This may have been caused by a change in dominant species from small discoid diatoms to Aulacoseira granulata because of the differences in Si content per unit cell volume.  相似文献   

10.

A set of carbon monoxide (CO) gas sensors based on porous silicon (PSi)/gold nanoparticle (AuNP) hetro structures were fabricated. Different forms of PSi surface morphologies were studied as a substrate for growth of AuNPs. Simple dipping process of PSi in hydrogen tetrachloroaurate (III) solution (HAuCl4) at fixed concentrations of 10−2 M/3.5 HF was used to synthesize AuNPs. The n-type PSi was equipped through photo-electrochemical etching process at current density value of 10 mA/cm2 under illumination condition of 530-nm wavelength and laser illumination intensity of 20 to 80 mW/cm2. Three different forms of PSi morphology, meso, macro, and double layers with pore shapes and sizes, were prepared. The structural and surface morphology properties of PSi-based substrate before and after deposition of AuNPs were investigated through studying of scanning electron microscopy (SEM), photoluminescence (PL), and X-ray diffraction (XRD). The electrical property (J-V) was carried out in primary vacuum and CO at low pressure. The results show that PSi surface morphologies strongly influenced the AuNP sizes and hence the sensor performance. It was found that decrease the AuNP sizes could be occasioned in high and fast current response.

  相似文献   

11.
蒸汽爆破和微生物酶解处理对剑麻纤维结构的影响   总被引:1,自引:0,他引:1  
张兰兰  郝再彬  李洋  黄斌 《广西植物》2011,31(2):270-274
将蒸汽爆破和微生物酶解两种方法处理的剑麻纤维与对照进行了比较,利用扫描电镜(SEM)、红外光谱(IR)和热性能分析等仪器对纤维微观表面结构、基团及其热稳定性进行了分析,同时对化学组分、直径、回潮率、含水率、耐碱性和抗拉强度等也进行了研究.结果表明:蒸汽爆破对剑麻纤维中的半纤维素组分影响较大,但在红外光谱中并未形成新的基...  相似文献   

12.
Ozonolysis was used to obtain polyols with terminal primary hydroxyl groups and different functionalities from trilinolein (or triolein), low-saturation canola oil, and soybean oil. The functionality of the model polyol from triolein (trilinolein) was 3.0 and that of soy polyol was 2.5, due to the presence of unreactive saturated fatty acids, while canola gave a polyol with a functionality of 2.8. All polyols exhibited a high tendency to crystallize at room temperature. The resulting waxes had melting points comparable to that of paraffin and very low viscosities in the liquid state. The polyols were cross-linked using 4,4'-methylenebis(phenyl isocyanate) to give polyurethanes. Glass transitions (T(g)) for the model-, canola-, and soy-based polyurethanes were 53, 36, and 22 degrees C, respectively. The about 30 degrees C lower T(g) of the soy-based polyurethane than that of the model polyurethane was the result not only of lower functionality but also of the presence of saturated fatty acids in the former. Polyurethane from the canola polyol had intermediate cross-linking density and properties. These polyurethanes displayed excellent mechanical properties and higher glass transition temperatures compared to polyurethanes from epoxidized and hydroformylated polyols of the same functionality, presumably due to the absence or lower content of dangling chains in the former.  相似文献   

13.
Whole blood optical biosensor   总被引:2,自引:0,他引:2  
The future of rapid point-of-care diagnostics depends on the development of cheap, noncomplex, and easily integrated systems to analyze biological samples directly from the patient (e.g. blood, urine, and saliva). A key concern in diagnostic biosensing is signal differentiation between non-specifically bound material and the specific capture of target molecules. This is a particular challenge for optical detection devices in analyzing complex biological samples. Here we demonstrate a porous silicon (PSi) label-free optical biosensor that has intrinsic size-exclusion filtering capabilities which enhances signal differentiation. We present the first demonstration of highly repeatable, specific detection of immunoglobulin G (IgG) in serum and whole blood samples over a typical physiological range using the PSi material as both a biosensor substrate and filter.  相似文献   

14.
In this work, the binding of the recombinant glutamine-binding protein (GlnBP) from Escherichia coli to gliadin peptides, toxic for celiac patients, was investigated by mass spectrometry experiments and optical techniques. Mass spectrometry experiments demonstrated that GlnBP binds the following amino acid sequence: XXQPQPQQQQQQQQQQQQL, present only into the toxic prolamines. The binding of GlnBP to gliadin suggested us to design a new optical biosensor based on nanostructured porous silicon (PSi) for the detection of trace amounts of gliadin in food. The GlnBP, which acts as a molecular probe for the gliadin, was covalently linked to the surface of the PSi wafer by a proper passivation process. The GlnBP-gliadin interaction was revealed as a shift in wavelength of the fringes in the reflectivity spectrum of the PSi layer. The GlnBP, covalently bonded to the PSi chip, selectively recognized the toxic peptide. Finally, the sensor response to the protein concentration was measured in the range 2.0-40.0 microg/L and the sensitivity of the sensor was determined.  相似文献   

15.
Osmolytes of the polyol series are known to accumulate in biological systems under stress and stabilize the structures of a wide variety of proteins. While increased surface tension of aqueous solutions has been considered an important factor in protein stabilization effect, glycerol is an exception, lowering the surface tension of water. To clarify this anomalous effect, the effect of a series of polyols on the thermal stability of a highly thermolabile two domain protein yeast hexokinase A has been investigated by differential scanning calorimetry and by monitoring loss in the biological activity of the enzyme as a function of time. A larger increase in the T(m) of domain 1 compared with that of domain 2, varying linearly with the number of hydroxyl groups in polyols, has been observed, sorbitol being the best stabilizer against both thermal as well as urea denaturation. Polyols help retain the activity of the enzyme considerably and a good correlation of the increase in T(m) (DeltaT(m)) and the retention of activity with the increase in the surface tension of polyol solutions, except glycerol, which breaks this trend, has been observed. However, the DeltaT(m) values show a linear correlation with apparent molal heat capacity and volume of aqueous polyol solutions including glycerol. These results suggest that while bulk solution properties contribute significantly to protein stabilization, interfacial properties are not always a good indicator of the stabilizing effect. A subtle balance of various weak binding and exclusion effects of the osmolytes mediated by water further regulates the stabilizing effect. Understanding these aspects is critical in the rational design of stable protein formulations.  相似文献   

16.
B-type natriuretic peptide (BNP) is an important biomarker in early diagnosis of congestive heart failure. Many efforts have been made previously to evaluate the BNP level in human plasma. We developed a porous silicon (PSi) affinity chip to detect BNP present at low concentrations in human plasma by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) directly. The PSi surface immobilized with antibodies captured and concentrated BNP through antibody-antigen interaction specifically and sensitively. A detection limit as low as 10 pg/mL BNP in human plasma was demonstrated by mass analysis. This effective on-chip recognition, enrichment, and detection strategy could be employed in identification of biomarkers in complex body fluids in diagnoses.  相似文献   

17.
1-Ethynylpyrene, trans-, & cis-1-(2-bromovinyl)pyrene, methyl 1-pyrenyl acetylene, and phenyl 1-pyrenyl acetylene are substrates for cytochrome P-450 dependent monooxygenases and also inhibitors of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activities in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, trans-1-(2-bromovinyl)pyrene, and methyl 1-pyrenyl acetylene cause a mechanism based inhibition (suicide inhibition) of the benzo[a]pyrene hydroxylase activities in microsomes from 5,6-benzoflavone or phenobarbital pretreated rats, while cis-1-(2-bromovinyl)pyrene only causes suicide inhibition of the hydroxylse activities in the 5,6-benzoflavone induced microsomes and phenyl 1-pyrenyl acetylene does not cause a detectable suicide inhibition of these activities in either type of microsome. Incubation with NADPH and 1-ethynylpyrene, trans-, or cis-1-(2-bromovinyl)pyrene causes a loss of the P-450 content in the microsomes from 5,6-benzoflavone or phenobarbital pretreated rats, but incubations with methyl 1-pyrenyl acetylene or phenyl 1-pyrenyl acetylene did not cause a loss of the P-450 content of either microsomal preparation.  相似文献   

18.
The pyramidal inversion mechanism of simple sulfoxides was studied, employing ab initio and DFT methods. The convergence of the geometrical and energetic parameters of H2SO and DMSO with respect to the Hamiltonian and basis set was analyzed in order to determine a computational level suitable for methyl phenyl sulfoxide (3), methyl 4-cyanophenyl sulfoxide (4), diphenyl sulfoxide (5), 4,4'-dicyanodiphenyl sulfoxide (6), benzyl methyl sulfoxide (7) and benzyl phenyl sulfoxide (8). The DFT B3LYP/6-311G(d,p) level was chosen for further calculations of larger sulfoxides. The barriers DeltaE calculated for the pyramidal inversion mechanism of sulfoxides 3-8 are in the range of 38.7-47.1 kcal/mol. These values are in good agreement with the experimental barriers for racemization via the pyramidal inversion mechanism. A resonance effect of a phenyl ring selectively stabilizes the transition state conformations, decreasing the energy barrier for pyramidal inversion by about 3 kcal/mol, compared to a similar molecule without a phenyl substituent. Introducing electron withdrawing groups (cyano) at the para positions of the phenyl ring(s) causes a further decrease of the energy barrier.  相似文献   

19.
Kong X  Yue J  Narine SS 《Biomacromolecules》2007,8(11):3584-3589
A new generation polyol (generation-II) with significantly higher triol content and higher hydroxyl value was synthesized from canola oil by introducing a mild solvent (ethyl acetate) and a more efficient reductive reagent (zinc) to the previous synthetic procedure (Narine, S. S.; Yue, J.; Kong, X. J. Am. Oil Chem. Soc. 2007, 84, 173-179). Polyurethane (PUR) elastomers were prepared by reacting this type of polyol with aliphatic diisocyanates. The physical and thermal properties of the PUR elastomers were studied using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) and compared to the elastomers made from the old generation polyol (generation-I). The concentration of elastically active network chains (nue) of the polymer networks was calculated based on rubber elasticity theory. Larger nue and narrower distribution of nue was observed in the case of the PURs prepared from the generation-II polyol. The relatively faster relaxation at higher temperature for this type of PUR elastomer, suggests a tighter cross-linked network structure by reducing the dangling chains effect. With the same OH/NCO molar ratio, the PURs prepared from the generation-II polyol showed higher glass transition temperatures (Tg), higher Young's modulus and tensile strength, and longer elongation at break.  相似文献   

20.
Recent studies have demonstrated that arginase plays important roles in pathologies such as asthma or erectile dysfunctions. We have synthesized new omega-borono-alpha-amino acids that are analogues of the previously known arginase inhibitors S-(2-boronoethyl)-l-cysteine (BEC) and 2-amino-6-boronohexanoic acid (ABH) and evaluated them as inhibitors of purified rat liver arginase (RLA). In addition to the distance between the B(OH)(2) and the alpha-amino acid functions, the position of the sulfur atom in the side chain also appears as a key determinant for the interaction with the active site of RLA. Furthermore, substitution of the alkyl side chain of BEC by methyl groups and conformational restriction of ABH by incorporation of its side chain in a phenyl ring led to inactive compounds. These results suggest that subtle interactions govern the affinity of inhibitors for the active site of RLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号