首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A water-soluble polysaccharide-peptidoglycan complex (PSPG) was prepared from heat-killedLactobacillus casei by digesting the bacteria with N-acetylmuramidase. The molecular weight of PSPG was over 30,000, and the polysaccharide portion of PSPG, its main component was composed of rhamnose, glucose, galactose, glucosamine and galactosamine. Mice pretreated intraperitoneally with PSPG survived after a lethal infection withListeria monocytogenes orPseudomonas aeruginosa. The growth of infecting bacteria (L. monocytogenes, P. aeruginosa, Salmonella typhimurium, Escherichia coli) in both the peritoneal cavity and the liver was inhibited markedly in the mice that had been treated with PSPG. It was suggested that macrophages may be the main effector for the anti-infectious effect of PSPG since treatment of mice with carrageenan, a selective macrophage blocker, markedly reduced the anti-infectious effect of PSPG.  相似文献   

2.
Mature fruit of Chorisia speciosa yield an exudate (E-I) following mechanical injury. The polysaccharide contains rhamnose, arabinose, xylose, mannose, glucose, galactose and glucuronic acid in molar ratios of 20:11:1:3:2:40:23. The main chain of the structure is composed by beta-galactopyranosyl units linked (1 --> 3) and (1 --> 6) as indicated by NMR spectra and methylation data. Arabinosef and rhamnose are terminal residues. In order to compare E-I with the polysaccharides from the fruit mesocarp, the latter was submitted to different extractions. The water fraction contains rhamnose, arabinose, xylose, mannose, glucose, galactose and uronic acid in molar ratios of 18:4:1:2:3:44:28. It was treated with CTAB yielding a precipitate which was decomplexed with NaCl, giving four fractions. The fraction obtained using 0.15 M NaCl had a quantitative composition similar that of E-I.  相似文献   

3.
Abstract The lipopolysaccharide isolated from Azospirillum lipoferum strain SpBr17 (ATCC29709) was proven to be composed from 7 neutral sugars, two of which, rhamnose and glucose, were the major constituents. Two heptoses, l -glycero- d -mannoheptose and d -glycero- l -mannoheptose were identified. Among 8 fatty acids isolated from the lipopolysaccharide only 3-hydroxypalmitic acid was amide-bound. The approximate molar ratios of the constituents 3-deoxy- l -mannooctulosonic acid : glucosamine : amide-linked fatty acids : ester-linked fatty acids : phosphate were 0.8 : 4 : 2 : 4 : 2.5.  相似文献   

4.
The composition of the Pseudomonas solanacearum lipolysaccharide (LPS) was found to be similar to that described for the LPS of enterobacteria. The lipid A contained fatty acids and glucosamine in a molar ratio of 5:2. The LPS fraction contained 2-keto-3-deoxyoctulosonic acid, L-glycero-D-mannoheptose, hexoses (glucose, rhamnose, and glucosamine), and a pentose (xylose). The LPSs from the wild-type strain (GMI1000), from the spontaneous rough mutant (GMI2000), and from their respective acridine orange-resistant (Acrr) mutants (GMI1178 and GMI2179) contained the same component sugars in their polysaccharide moieties, but the relative amounts of each sugar varied greatly. Spontaneous mutation to the rough type was characterized by a decrease in the ratio of rhamnose to glucose, whereas a reverse effect was seen for the acridine orange resistance mutation from the parent strains (GMI1000 and GMI2000) to the respective mutant strains (GMI1178 and GMI2179). The exopolysaccharide (EPS) from GMI1000 was found to be composed of two fractions: a heteropolysaccharide (galactosamine, glucose, and rhamnose) excluded from Sephadex G-50 and an additional glucan with a lower molecular weight. Strains GMI1000 and GMI1178 produced comparable amounts of EPS, GMI2179 synthesized less EPS, and GMI2000 produced no detectable EPS. High-pressure liquid chromatography and 13C nuclear magnetic resonance analyses revealed some differences between these EPSs. The glucan fraction seemed to be the major component of the EPS from GMI2179, whereas GMI1000 and GMI1178 EPSs contained both fractions and appeared to differ in the structures of their heteropolysaccharide fractions. Viscosity measurements confirmed differences between whole EPSs produced by the three strains.  相似文献   

5.
Jia LM  Liu L  Dong Q  Fang JN 《Carbohydrate research》2004,339(16):2667-2671
A new heteropolysaccharide (HEP-1) was isolated from the fruiting bodies of Hericium erinaceus. It was estimated to have a molecular weight of 1.8x10(4) da and showed [alpha](D)(20) +129 (c 0.295, H(2)O). HEP-1 is composed of rhamnose, galactose, and glucose in the ratio of 1.19:3.81:1.00. Its structural features were investigated using composition analysis, methylation analysis, partial hydrolysis, and IR and NMR spectroscopy. The results showed that HEP-1 has a (1-->6)-linked alpha-d-galactopyranosyl backbone with branches that are composed of rhamnose and glucose attached to O-2.  相似文献   

6.
The carbohydrates present in lipopolysaccharide (LPS) from Pseudomonas solanacearum are rhamnose, xylose, 2-amino-2-deoxyglucose, glucose, heptose, and 2-keto-3-deoxyoctonate. LPS extracted from cultures grown on either glycerol or glucose (as the major source of carbon) and extracted after various incubation periods had similar compositions. The LPS from several strains of the bacterium contained the same component sugars, but the amounts of each sugar varied considerably. It was observed, however, that xylose and 2-amino-2-deoxyglucose increased proportionately with rhamnose, the major component. Phenol-water-extracted LPS contained measurable amounts of nucleic acid, protein, and arabinan, but none of these polymers were detected in LPS extracted with phenol-chloroform-petroleum ether. Polysaccharides liberated from LPS by mild acid hydrolysis were purified by gel filtration. Carbohydrate analysis of the LPS from a virulent, fluidal strain (K60) showed that the O-specific antigen consisted of rhamnose, xylose, and 2-amino-2-deoxyglucose in the proportions 4:1:1. The LPS of an avirulent, afluidal strain (B1) lacked the O-specific antigen; the R-core region consisted of rhamnose, glucose, heptose, and 2-keto-3-deoxyoctonate. Methylation analysis indicated that the K60 O-specific antigen was composed of a hexasaccharide repeating unit containing 3-, 2-, and 3,4-substituted rhamnopyranosyl residues, 3-substituted 2-amino-2-deoxyglucose, and terminal xylopyranose in the molar ratios 2:1:1:1:1.  相似文献   

7.
In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.  相似文献   

8.
The cold-water extract from the skin of Opuntia ficus-indica fruits was fractionated by anion-exchange chromatography. The major fraction, which was purified by size exclusion chromatography, consisted of a polysaccharide composed of galactose and arabinose residues in the ratio 6.3:3.3, with traces of rhamnose, xylose and glucose, but no uronic acid. The results of methylation analysis, supported by (13)C NMR spectroscopy, indicated that this polysaccharide corresponded to an arabinogalactan having a backbone of (1-->4)-linked beta-D-galactopyranosyl residues with 39.5% of these units branched at O-3. The side-groups consisted either of single L-arabinofuranosyl units or L-arabinofuranosyl alpha-(1-->5)-linked disaccharides. This polysaccharide is thus an arabinogalactan that can be classified in the type I of the arabinogalactan family.  相似文献   

9.
The sugar analysis of the glycans of the type strains of marine proteobacteria of the genera Pseudoalteromonas and Marinomonas--Pseudoalteromonas atlantica IAM12927T, P. aurantia NCIMB 2033T, P. citrea ATCC 29719T, P. elyakovii KMM 162T, P. espejiana ATCC 29659T, P. piscicida NCIMB 645T, P. tetraodonis IAM 14160T, Marinomonas communis ATCC 27118T, and M. vaga ATCC 27119T--showed that they contain glucose, galactose, galactosamine, glucosamine, fucose, rhamnose, mannose, heptose, 2-keto-3-deoxyoctonate (KDO), uronic acids, colitose (3,6-dideoxyl-L-xylo-hexose), and 6-deoxy-L-talose. The carbohydrate composition of the antigenic polysaccharides (PSs) of P. elyakovii KMM 162T and P. espejiana ATCC 29659T depended on the type and the concentration of carbohydrate substrates in the nutrient media. The molar proportion between rhamnose, glucose, and galactose (ca. 1:0.3:2) in the PS of P. elyakovii KMM 162T was almost the same in the media lacking carbohydrates or containing glucose or galactose at a concentration of 1 g/l. At the same time, the molar proportion between fucose, glucose, galactose, galactosamine, and glucosamine (ca. 1:1:1:2:0.5) in the PS of P. espejiana ATCC 29659T depended on the presence and the concentration of carbohydrate substrates in the medium. A high concentration of glucose in the medium (30 g/l) brought about a rise in the content of glucose in PSs (9-fold for the PS of P. elyakovii KMM 162T and 4.6-fold for the PS of P. espejiana ATCC 29659T) and led to a decrease in the content of other carbohydrates. The cultivation of these two strains at a lactose concentration of 30 g/l resulted in their PSs containing glucose and galactose in about equal proportions (ca. 1:1 in the case of P. espejiana ATCC 29659T and ca. 2.1:1.7 in the case of P. elyakovii KMM 162T).  相似文献   

10.
R Bhat  A Marx  C Galanos    R S Conrad 《Journal of bacteriology》1990,172(12):6631-6636
Lipid A derived from Pseudomonas aeruginosa PAO1 contains a biphosphorylated 1-6-linked glucosamine disaccharide backbone. The reducing glucosamine has an unsubstituted glycosidically linked phosphate at C-1. The nonreducing glucosamine has an ester-bound phosphate at C-4' which is nonstoichiometrically substituted with 4-amino-4-deoxyarabinose. Induction of 4-amino-4-deoxyarabinose was dependent on cultural conditions. No pyrophosphate groups were detected. Acyloxyacyl diesters are formed by esterification of the amide-bound 3-hydroxydodecanoic acid with dodecanoic acid and 2-hydroxydodecanoic acids in an approximate molar ratio of 2:1. Dodecanoic and 3-hydroxydecanoic acids are esterified to positions C-3 and C-3' in the sugar backbone. All hydroxyl groups of the glucosamine disaccharide except C-4 and C-6' are substituted. Lipopolysaccharide chemical analyses measured glucose, rhamnose, heptose, galactosamine, alanine, phosphate, and glucosamine. The proposed lipid A structure differs from previous models. There are significant differences in acyloxyacyl diesters, and the proposed model includes an aminopentose substituent.  相似文献   

11.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

12.
The lipopolysaccharides of Rhodopseudomonas capsulata strains St. Louis (ATCC 23782) and Sp 11 both contain L-acofriose, rhamnose, glucose and glucosamine as the main sugar constituents. 2-Keto-3-deoxyoctonate and neuraminic acid were tentatively identified. The fatty acid spectrum found with both strains comprises 3-OH-C10 and C12:1 (ester-linked) and 3-oxo-C14 (amide-linked). Isolated lipid A from strain Sp 11 contains glucosamine, glucosamine-phosphate and the total of the fatty acids of the lipopolysaccharide. Methylation analysis of the degraded polysaccharide of this lipopolysaccharide shows L-acofriose in both terminal and 1 leads to 2 chain-linked positions in a 1:4 molar ratio. Rhamnose is exclusively chain-linked (1 leads to 2), glucose is both terminally and chain-linked (1 leads to 6) in a 1:1 molar ratio. The serological activity of the lipopolysaccharide of both the R. capsulata strains is low in antisera against living or heat-killed cells when tested by passive hemagglutination, Ouchterlony immunoprecipitation or gel-immunoelectrophoresis. No crossreaction was observed among the lipopolysaccharides of R. capsulata strains St. Louis, Sp 11 and 37b4 in immunoprecipitation. Lipopolysaccharide of strain Sp 11 was found to lack lethal toxicity in galactosamine-sensitized mice.  相似文献   

13.
A hemicellulosic polysaccharide, which was homogeneous on sedimentation analysis and also on electrophoresis, was isolated from the rice endosperm cell walls by the combination of alkaline extraction, ion exchange chromatography and iodine complex formation. It is composed of arabinose, xylose and glucose (molar ratio, 1.0: 2.0: 5.7) together with a small amount of galactose and rhamnose. Methylation analysis, Smith degradation and fragmentation with cellulase showed that this polysaccharide is composed of three distinct polysaccharide moieties i.e., xyloglucan, β-glucan and arabinoxylan. The xyloglucan consists of β-(1→4)-linked glucan back bone and short side chains of single xylose units or galactosylxylose both attached to C-6 of the glucose residues. The β-glucan contains both (1 →3)-and (1→4)-linkages similarly to the other cereal β-glucans, but differ from them in containing the blocks of (1→3)-linked glucose residues in the chain. The arabinoxylan has a highly branched structure, in which 78% of (1→4)-linked xylose residues have short side chains of arabinose at C-3 position.

On the basis of these findings, the interconnection of these polysaccharide moieties is discussed.  相似文献   

14.
Polysaccharides from cultivated Saussurea involucrata (CSIP) were purified, two major fractions (CSIP1-2 and CSIP2-3) were investigated for their molecular weights, monosaccharide compositions and in vitro antioxidant activities. The results suggested that the molecular weights of CSIP1-2 and CSIP2-3 were approximately 163.5 kDa and 88.6 kDa, respectively. CSIP1-2 was composed of glucose, galactose, xylose, rhamnose, arabinose and galacturonic acid with a molar ratio of 1.651:0.39:0.062:8.331:1.759:40.426. CSIP2-3 was composed of glucose, galactose, xylose, rhamnose, arabinose and galacturonic acid with a molar ratio of 0.762:0.657:0.112:5.587:0.318:44.655. Different scavenging activities on superoxide radical, DPPH radical and hydroxyl radical were observed in CSIP1-2 and CSIP2-3 at tested concentrations.  相似文献   

15.
Lipopolysaccharide (LPS) was isolated and purified from Wolinella recta ATCC 33238 by the phenol-water procedure and RNAase treatment. The sugar components of the LPS were rhamnose, mannose, glucose, heptose, 2-keto-3-deoxyoctonate (KDO) (3-deoxy-D-manno-octulosonate) and glucosamine. The degraded polysaccharide prepared from LPS by mild acid hydrolysis was fractionated by Sephadex G-50 gel chromatography into three fractions: (1) a high-molecular-mass fraction, eluting just behind the void volume, consisting of a long chain of rhamnose (22 mols per 3 mols of heptose residue) with attached core oligosaccharide; (2) a core oligosaccharide containing heptose, glucose and KDO, substituted with a short side chain of rhamnose; (3) a low-molecular-mass fraction containing KDO and phosphate. The main fatty acids of the lipid A were C12:0, C14:0, 3-OH-C14:0 and 3-OH-C16:0. The biological activities of the LPS were similar to those of Salmonella typhimurium LPS in activation of the clotting enzyme of Limulus amoebocytes, the Schwartzman reaction and mitogenicity for murine lymphocytes, although all the biological activities of lipid A were lower than those of intact LPS.  相似文献   

16.
Covalent linkages between peptidoglycan and cellodextrins in the cell walls of Rhizobium were defined by the analysis of lysozyme split products. Digestion of peptidoglycan with lysozyme resulted in the liberation, beside disaccharide tetrapeptide fragments composed of glucosamine, muramic acid, alanine, glutamic acid and diaminopimelic acid in a molar ratio 1:1:2:1:1, also significant amounts of glucose and its polymers. The neutral carbohydrates composed of glucose, were further purified and determined as cellobiose, cellotriose and cellotetrose. Peptidoglycans pretreated with cellulase, which librated glucose and cellobiose, still contains glucose linked by lysozyme sensitive but cellulase insensitive bond.  相似文献   

17.
Summary The culture supernatants of 126 bacterial strains isolated during screening for hydrophobic cell surfaces, were tested for the production of emulsifying agents. Forty-eight strains were found to produce effective emulsion-stabilizing substances during growth on glucose. The most effective emulsifying agents were isolated and could be divided into two chemical groups. The first group was separated from the isolated extracts by the use of thin-layer chromatography and detected as ninhydrin-negative, 4,4'-tetramethyldiamino-diphenylmethane-positive spots. The amino acid composition indicated surfactin and iturin, produced by one Bacillus species, and viscosin, produced by a Pseudomonas species. The second group was identified as polymeric substances. The chemical characterization of five polymers showed polysaccharides that were able to stabilize emulsions. From these the neutral and charged monosaccharides were determined qualitatively. The constituents of the five isolated polysaccharides were: strain 5, glucose, strain 17, rhamnose, glucose, glucuronic acid; strain 33, rhamnose, galactose, glucose. glucuronic acid; strain 113, fucose, galactose, glucose, galacturonic acid, glucosamine; strain 259, one unknown compound, rhamnose, galactose, glucuronic acid.Offprint requests to: K. Poralla  相似文献   

18.
Extracellular polysaccharides were isolated from Pseudomonas caryophylli CFR 1705 grown on lactose containing medium. The major fraction (no.1) obtained on DEAE-cellulose chromatography was composed of rhamnose, mannose and glucose in the ratio 1:3.26:4.97, respectively, and having a molecular weight of 1.1×106 Da. Methylation followed by GC-MS analysis revealed it to be a highly branched 1,4-linked hexosan with mannose and glucose as the branch-off residues at positions C-2 and C-6 of the main chain. Rhamnose was essentially found as non-reducing terminal residue.  相似文献   

19.
The aim of this study was to characterize the extracellular polysaccharides (EPS) released by a freshwater Thalassiosira sp. (Bacillariophyceae) and evaluate their degradation by heterotrophic microbial populations from the same habitat of Thalassiosira sp., a tropical eutrophic reservoir. The EPS were purified by anion exchange column chromatography, the monosaccharide composition was determined by GC, and the linkages of the monosaccharides by GC‐MS. The EPS is a mannose‐rich heteropolysaccharide composed of two different acidic fractions. Both of these fractions are composed of mannose, rhamnose, fucose, xylose, galactose, glucose, glucuronic acid, and N‐acetyl glucosamine but with different proportions. N‐acetyl galactosamine occurs only in fraction 1 and galacturonic acid only in fraction 2. We monitored the concentrations of the monosaccharides in the EPS during its degradation using pulse amperometric detection in an HPLC. The decay patterns of the monosaccharides were varied and the deoxy sugars, fucose and rhamnose, were degraded at a slower rate than the other components, increasing their relative concentrations and the hydrophobic feature of the EPS. The possibility of a selective degradation, which enhances the stickiness of the EPS, promoting transparent exopolymeric particles and aggregate formation, is discussed based on the literature data.  相似文献   

20.
A lipopolysaccharide (LPS) has been isolated from the gram-negative photosynthetic bacterium Rhodopseudomonas capsulata. Chemical analysis revealed the presence of d-glucose, d-galactose, l-rhamnose, 3-O-methyl-l-rhamnose (l-acofriose), d-glucosamine, 2-keto-3-deoxyoctonate, and neuraminic acid. The LPS does not contain l-glycero-d-mannoheptose, a typical component of the LPS of enteric bacteria. Fatty acid analysis showed that, apart from lauric acid, two hydroxy fatty acids (hydroxycaproic and hydroxymyristic acids) are the main components. By hydrolysis in weak acid, the LPS has been separated into a polysaccharide part (degraded polysaccharide) and a lipid part (lipid A). Presumably the lipid A contains a glucosamine backbone. Whereas the OH-groups of glucosamine are esterified with lauric and hydroxycaproic acids, hydroxymyristic acid is linked to the amino group of the sugar. By separation of the degraded polysaccharide by gel filtration, a fraction has been isolated which inhibited hemagglutination in a system containing antiserum, obtained by immunization of rabbits with whole cells, and isolated LPS. This fraction, which includes the determinant group, contains the sugars glucose, rhamnose, and acofriose. A second fraction obtained in this way was found to be serologically inactive and is composed of glucose, galactose, neuraminic acid, and phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号