首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose.  相似文献   

12.
13.
14.
15.
The stimulation by calf serum of phosphate uptake into 3T3 cells results from a change in maximum velocity of the transport process with no change in the Michaelis constant. Only arsenate among a series of inorganic structural analogs of phosphate inhibited phosphate uptake indicating a high specificity for the process. The arsenate inhibition was competitive in nature. Papaverine, theophylline, and protaglandin E1, drugs known to maintain high intracellular levels of cAMP, had little effect on serum stimulated phosphate uptake. The phosphate uptake stimulating factor(s) in serum could be distinguised from the 3T3 cell survival and migration factors by stability characteristics, but this factor(s) could not be completely separated from a uridine uptake stimulation activity or growth promoting activity using a variety of serum fractionation procedures. Only partial stimulation of the uptake process was achieved with any one serum fraction indicating a multiplicity of serum components is probably involved in this process. Because of the rapidity of serum activation of phosphate uptake and its apparent independence of intracellular cyclic nucleotide levels, it is suggested that serum factors may stimulate phosphate uptake by inducing structural changes in the phosphate carrier system.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号