首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L A Xue  P Talalay  A S Mildvan 《Biochemistry》1990,29(32):7491-7500
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by a conservative tautomeric transfer of the 4 beta-proton to the 6 beta-position using Tyr-14 as a general acid and Asp-38 as a general base [Kuliopulos, A., Mildvan, A. S., Shortle, D., & Talalay, P. (1989) Biochemistry 28, 149]. On deuteration of the 4 beta-position (97.0%) of the substrate, kcat(H)/kcat(4 beta-D) is 6.1 in H2O and 6.3 in D2O. The solvent isotope effect, kcat(H2O)/kcat(D2O), is 1.6 for both the 4 beta-H and 4 beta-D substrates. Mutation of Tyr-55 to Phe lowers kcat 4.3-fold; kcat(H)/kcat/4 beta-D) is 5.3 in H2O and 5.9 in D2O, and kcat(H2O)/kcat(D2O) with the 4 beta-H and 4 beta-D substrates is 1.5 and 1.7, respectively, indicating concerted general acid-base catalysis in either the enolization or the ketonization step of both the wild-type and the Tyr-55----Phe (Y55F) mutant enzymes. An additional slow step occurs with the Y55F mutant. Smaller isotope effects on Km are used to estimate individual rate constants in the kinetic schemes of both enzymes. On deuteration of the 4 alpha-position (88.6%) of the substrate, the secondary isotope effect on kcat/Km corrected for composition is 1.11 +/- 0.02 with the wild-type enzyme and 1.12 +/- 0.02 with the Y55F mutant. These effects decrease to 1.06 +/- 0.01 and 1.07 +/- 0.01, respectively, when the 4 beta-position is also deuterated, thereby establishing these to be kinetic (rather than equilibrium) secondary isotope effects and to involve a proton-tunneling contribution. Deuteration of the 6-position of the substrate (92.0%) produces no kinetic isotope effects on kcat/Km with either the wild-type (1.00 +/- 0.01) or the Y55F mutant (1.01 +/- 0.01) enzyme. Since a change in hybridization from sp3 to sp2 occurs at C-4 only during enolization of the substrate and a change in hybridization at C-6 from sp2 to sp3 occurs only during reketonization of the dienol intermediate, enolization of the substrate constitutes the concerted rate-limiting step. Concerted enolization is consistent with the right angle or antarafacial orientations of Tyr-14 and Asp-38 with respect to the enzyme-bound substrate and with the additive effects on kcat of mutation of these catalytic residues [Kuliopulos, A., Talalay, P., & Mildvan, A. S. (1990) Biophys. J. 57, 39a].  相似文献   

2.
The reaction catalyzed by delta 5-3-ketosteroid isomerase has been shown to occur via the concerted enolization of the delta 5-3-ketosteroid substrate to form a dienolic intermediate, brought about by Tyr-14, which hydrogen bonds to and protonates the 3-keto group, and Asp-38, which removes and axial (beta) proton from C-4 of the substrate, in the same rate-limiting step [Xue, L., Talalay, P., & Mildvan, A.S. (1990) Biochemistry 29, 7491-7500; Kuliopulos, A., Mildvan, A.S., Shortle, D., & Talalay, P. (1989) Biochemistry 26, 3927-3937]. Since the axial C-4 proton is removed by Asp-38 from above the substrate, a determination of the complete stereochemistry of this rapid, concerted enolization requires information on the direction of approach of Tyr-14 to the enzyme-bound steroid. The double mutant enzyme, Y55F + Y88F, which retains Tyr-14 as the sole Tyr residue, was prepared and showed only a 4.5-fold decrease in kcat (12,000 s-1) and a 3.6-fold decrease in KM (94 microM) for delta 5-androstene-3, 17,dione, in comparison with the wild-type enzyme. Deuteration of the aromatic rings of the 10 Phe residues further facilitated the assignment of the aromatic proton resonances of Tyr-14 in the 600-MHz TOCSY spectrum at 6.66 +/- 0.01 ppm (3,5H) and at 6.82 +/- 0.01 ppm (2,6H). Variation of the pH from 4.9 to 10.9 did not alter these shifts, indicating that the pKa of Tyr-14 exceeds 10.9. Resonances assigned to the three His residues titrated with pKa values very similar to those found with the wild-type enzyme. The binding of 19-nortestosterone, a product analogue and substrate of the reverse isomerase reaction, induced downfield shifts of -0.12 and -0.06 ppm of the 3,5-and 2,6-proton resonances of Tyr-14, respectively, possibly due to deshielding by the 3-keto group of the steroid, but also induced +0.29 to -0.41 ppm changes in the chemical shifts of 8 of the 10 Phe residues and smaller changes in 10 of the 12 ring-shifted methyl resonances, indicating a steroid-induced conformation change in the enzyme. NOESY spectra in H2O revealed strong negative Overhauser effects from the 3,5-proton resonance of Tyr-14 to the overlapping 2 alpha-, 2 beta-, or 6 beta-proton resonances of the bound steroid but no NOE's to the 4- or 6 alpha-protons of the steroid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The α and β isomers of spiro-3-oxiranyl-5α-androstan-17β-ol were tested as possible inhibitors of Δ5-3-ketosteroid isomerase of Pseudomonastestosteroni. The β-oxirane causes a first-order irreversible inactivation of the enzyme and shows saturation kinetics (KI, 17 μM). Protection against inactivation is exhibited by 19-nortestosterone, a competitive inhibitor of the isomerase. Although the α-oxirane was found to be a good reversible inhibitor (Ki, 21 μM), prolonged incubation with it failed to produce any inactivation of the isomerase. The results obtained are consistent with the presence of a nucleophilic group situated near the 3-keto group of the substrate in the enzyme-steroid complex.  相似文献   

4.
5.
A key unknown still to be explored concerning the mechanism of delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni is the extent of the proton transfer between tyrosine-14 of the enzyme and the C-3 carbonyl oxygen of the steroid substrate. This report is a preliminary study of a system we are developing to allow us eventually to use a Br?nsted analysis to measure this transfer. We describe the construction of an expression vector and tyrosine-14----glycine-14 mutant of the enzyme and its specific activation, in the manner of chemical rescue, by a variety of phenolic compounds. We suggest that the binding region of phenol is very tight and that the level of activation may be a result of steric constraints as well as of differences in the pKa' of the phenol.  相似文献   

6.
Gel chromatography and ultracentrifugation studies show that delta5-3-ketosteroid isomerase of Pseudomonas testosteroni a dimer with a molecular weight of 26,800 at concentrations below 1 mg per ml, undergoes reversible, concentration-dependent association at higher enzyme concentrations. In the concentration range between 0.04 and 15.6 mg per ml, apparent molecular radii of 23 A to 36 A and molecular weights of 26,000 to 69,000 were observed. The latter value represents the weight average molecular weight of two or more ploymerization species in rapid equilibrium, rather than a discrete polymeric form of the enzyme. The isomerase dimer has been found to be unusually stable to dissociation upon dilution, even at concentrations in the nanogram per ml range. Evidence is presented which suggests that the enzyme is present as a dimer in P. testosteroni cells and that this is a catalytically active species. The isomerase monomer has been obtained and its molecular weight studied by gel electrophoresis in the presence of sodium dodecyl sulfate. A new determination of the extinction coefficient of the isomerase gives the value of 0.336 for the absorbance at 280 nm in a 1-cm light path of a solution containing 1 mg of the isomerase per ml.  相似文献   

7.
delta 5-3-Ketosteroid isomerase (KSI: EC 5.3.3.1) of Pseudomonas testosteroni catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by the stereospecific transfer of the steroid 4 beta-proton to the 6 beta-position, using Tyr-14 as a general acid and Asp-38 as a base. Ultraviolet resonance Raman (UVRR) spectra have been obtained for the catalytically active double mutant Y55F + Y88F, which retains Tyr-14 as the only tyrosine residue (referred to as the Y14(0) mutant), and the Y14F mutant, which has 50,000-fold lower activity. The UVRR results establish that binding of the product analog and competitive inhibitors 19-nortestosterone or 4-fluoro-19-nortestosterone to the Y14(0) mutant does not result in the formation of deprotonated Tyr-14. The UVRR spectra of the steroid inhibitors show large decreases in the vinyl and carbonyl stretching frequencies on binding to the Y14(0) enzyme but not on binding to the Y14F enzyme. These changes cannot be mimicked by protonation of the steroids. For 19-nortestosterone, the vinyl and carbonyl stretching frequencies shift down (with respect to the values in aqueous solution) by 18 and 27 cm-1, respectively, on binding to Y14(0) KSI. It is proposed that the changes in the steroid resonance Raman spectrum arise from polarization of the enone moiety via the close proximity of the charged Asp-38 side chain to the vinyl group and the directional hydrogen bond between Tyr-14 and the 3-carbonyl oxygen of the steroid enone. The 230-nm-excited UVRR spectra do not, however, show changes that are characteristic of strong hydrogen bonding from the tyrosine hydrogen. It is proposed that this hydrogen bonding is compensated by a second hydrogen bond to the Tyr-14 oxygen from another protein residue. UVRR spectra of the Y14(0) enzyme obtained using 200 nm excitation show enhancement of the amide II and S Raman bands. The secondary structure of KSI was estimated from the amide II and S intensities and was found to be low in alpha-helical structure. The alpha-helix content was estimated to be in the range of 0-25% (i.e., 10 +/- 15%).  相似文献   

8.
K Y Choi  W F Benisek 《Gene》1987,58(2-3):257-264
We have cloned an approx. 5-kb fragment of Pseudomonas testosteroni DNA containing the structural gene of delta 5-3-ketosteroid isomerase into the EcoRI site of the lambda gt11 genome. Escherichia coli infected with these recombinant phages produce a polypeptide which is recognized by antiserum raised against the purified isomerase. Four of the recombinant lambda gt11 clones contain significant levels of isomerase activity and produce an immunopositive polypeptide of the same apparent Mr as the native isomerase obtained from P. testosteroni. The approx. 5-kb fragment hybridizes to synthetic 21-mer and 17-mer oligodeoxynucleotide mixtures corresponding to the 5' and 3' regions, respectively, of the expected nucleotide sequence of the gene.  相似文献   

9.
The Δ5-3-ketosteroid isomerase (EC 5.3.3.1) of bovine adrenal microsomes is activated as much as 10- to 20-fold by micromolar concentrations of bovine serum albumin. Comparable activations are observed with the serum albumins of 10 other mammalian species, but are not seen with ovalbumin or conalbumin. Evidence that the activation is attributable to the serum albumins, rather than to a small, firmly-bound ligand, is based on: (1) Failure to remove the stimulatory activity from the albumin by chloroform extraction, dialysis, or gel filtration; (2) Destruction of the activity by heating or by trypsin digestion; (3) Precipitation of the stimulatory activity of bovine serum albumin by specific antibody. Bovine serum albumin induces small decreases in the Michaelis constant for Δ5-androstene-3,17-dione, but most of the activational effect reflects an increase in the maximum velocity. Low concentrations of Triton X-100, which are without effect on the isomerase activity, prevent the activation by bovine serum albumin.  相似文献   

10.
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) of Pseudomonas testosteroni promotes the highly efficient isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by means of a direct and stereospecific transfer of the 4 beta-proton to the 6 beta-position, via an enolic intermediate. An acidic residue responsible for the protonation of the 3-carbonyl function of the steroid and a basic group concerned with the proton transfer have been implicated in the catalytic mechanism. Recent NMR studies with a nitroxide spin-labeled substrate analogue have allowed positioning of the steroid into the 2.5-A X-ray crystal structure of the enzyme [Kuliopulos, A., Westbrook, E.M., Talalay, P., & Mildvan, A.S. (1987) Biochemistry 26, 3927-3937], thereby corroborating the approximate location of the steroid binding site deduced from a difference Fourier X-ray diffraction map of the 4-(acetoxymercuri)estradiol-isomerase complex [Westbrook, E.M., Piro, O.E., & Sigler, P.B. (1984) J. Biol. Chem. 259, 9096-9103]. The steroid lies in a hydrophobic cavity near Asp-38, Tyr-14, and Tyr-55. In order to assess the role of these amino acid residues in catalysis, the gene for isomerase was cloned, sequenced, and overexpressed in Escherichia coli [Kuliopulos, A., Shortle, D., & Talalay, P. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8893-8897], and the following mutants were prepared: Asp-38 to asparagine (D38N) and Tyr-14 and Tyr-55 to phenylalanine (Y14F and Y55F, respectively). The kcat value of the D38N mutant enzyme is 10(5.6)-fold lower than that of the wild-type enzyme, suggesting that Asp-38 functions as the base which abstracts the 4 beta-proton of the steroid in the rate-limiting step. Threefold lower Km values in all mutants indicate tighter binding of the substrate to the more hydrophobic sites. In comparison with the wild-type enzyme, the Y55F mutant shows only a 4-fold decrease in kcat while the Y14F mutant shows a 10(4.7)-fold decrease in kcat, suggesting that Tyr-14 is the general acid. The red shift of the ultraviolet absorption maximum of the competitive inhibitor 19-nortestosterone from 248 to 258-260 nm, which occurs upon binding to the wild-type enzyme [Wang, S.F., Kawahara, F.S., & Talalay, P. (1963) J. Biol. Chem. 238, 576-585], is mimicked in strong acid. This spectral shift was also observed with the D38N and Y55F mutants, but not on binding of the steroid to the Y14F mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The crystal structure of the dimeric steroid metabolizing enzyme, delta 5-3-ketosteroid isomerase (EC 5.3.3.1), has been solved to 6-A resolution by multiple isomorphous replacement, augmented by real space direct methods. The unit cell is hexagonal (space group P6122) with dimensions a = b = 65.4 A, c = 504 A, and contains four identical 13,400-dalton protomers in each of its 12 asymmetric units. The 504-A c axis required double focusing mirrors (Franks optics) to resolve the reflections. The complexity of the combined local and lattice symmetry necessitated direct methods to establish the positions of heavy atoms in even the simplest of the isomorphous derivatives. The electron density map clearly showed both (a) the elaborate packing scheme of protomers, which accounts for this large and complicated unit cell, and (b) the coarse features of the functional dimer. The steroid-binding site has been established by imaging the bound inhibitor, 4-acetoxymercuriestradiol, in a difference Fourier map. Each of the dimer's two steroid-binding sites lies completely within one subunit but close enough to the opposing subunit that functional interactions may be possible.  相似文献   

12.
K Y Choi  W F Benisek 《Gene》1988,69(1):121-129
The structural gene for the delta 5-3-ketosteroid isomerase of Pseudomonas testosteroni has been sequenced by the dideoxy method. The sequence obtained confirms the amino acid (aa) sequence of Benson et al. [J. Biol. Chem. 246 (1971) 7514-7525] at all but 5 aa residues of the 125-aa polypeptide. Amino acid residues 22, 24, 33, and 38, reported to be asparagines by Benson et al., are found to be encoded by aspartic acid codons. Amino acid residue 77, reported to be a glutamine by Benson et al., is encoded by a glutamic acid codon. The identification of aa 38 as aspartic acid, coupled with its presence in the active site, as indicated by previous affinity and photoaffinity-labeling studies and confirmed independently by x-ray crystallographic studies, strengthens the hypothesis that Asp-38 is the aa responsible for the 4 beta to 6 beta proton transfer which is part of the enzymatic reaction.  相似文献   

13.
The molecular weight of delta-5-3-ketosteroid isomerase from Pseudomonas testosteroni was determined by means of sedimentation equilibrium and exclusion chromatography over a wide range of enzyme concentrations in 0.2 M potassium phosphate buffer, pH 7.0. In addition, the sedimentation constant of the enzyme was determinded over an extended range of concentrations. The enzyme was found to have a molecular weight of 26,000 plus or equal to 1,000, suggesting that it is a dimer of identical or similar 13,400 molecular weight polypeptide chains. In the ultracentrifuge this dimeric species was found to undergo aggregation at enzyme concentrations above 2 mg per ml and dissociation at enzyme concentrations below 0.05 mg per ml. Exclusion chromatography studies indicate that under the conditions of chromatography the oligomeric enzyme is partially dissociated at enzyme concentrations in the range 0.2 to 0.002 mug per ml. These results suggest that under conditions of enzyme assay in 0.2 M potassium phosphate buffer, pH 7.0, isomerase is in a monomeric state of aggregation.  相似文献   

14.
M Hearne  W F Benisek 《Biochemistry》1983,22(10):2537-2544
In order to identify the minor site(s) of photoattachment of unsaturated steroid ketones to delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni, we have developed a solid-state photoaffinity labeling technique. Two solid-state reagents, O-carboxymethylagarose-ethylenediamine-succinyl-17 beta-O-19-nortestosterone and O-carboxymethylagarose-ethylenediamine-succinyl-17 beta-O-4,6-androstadien-3-one, have been synthesized. Under anaerobic conditions, isomerase bound to these resins is photoinactivated by UV light (lambda greater than 290 nm) whereas isomerase bound to O-carboxymethylagarose-ethylenediamine-deoxycholate or isomerase in the presence of O-carboxymethylagarose-ethylenediamine-acetate is almost completely stable to irradiation under the same conditions. Photoinactivation under anaerobic condition promoted by the resin-bound steroid ketones results from a reaction at the active site since the competitive inhibitor, sodium cholate, which does not absorb light above 290 nm, provides protection toward photoinactivation. Preliminary analysis of isomerase that has been photolyzed in the presence of O-carboxymethylagarose-ethylenediamine-succinyl-17 beta-O-4,6-androstadiene-3-one has established that the enzyme is converted to at least two different forms. One form binds more tightly to the resin than does the native enzyme. This form can be eluted by a sodium dodecyl sulfate containing buffer. The second form is not eluted by this buffer but can be released from the resin by cleavage of the ester bond linking the steroid to the derivatized agarose. We presume that the latter form is covalently coupled to the resin-linked steroid. In the presence of oxygen, additional nonspecific inactivation reactions occur, but these can be suppressed by the singlet oxygen trap, L-histidine. The application of solid-state photoaffinity reagents to some areas of receptor isolation and characterization is discussed.  相似文献   

15.
L A Xue  P Talalay  A S Mildvan 《Biochemistry》1991,30(45):10858-10865
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni catalyzes the conversion of androst-5-ene-3,17-dione to androst-4-ene-3,17-dione by a stereoselective transfer of the 4 beta-proton to the 6 beta-position. The rate-limiting step has been shown to be the concerted enolization of the enzyme-bound substrate comprising protonation of the 3-carbonyl oxygen by Tyr-14 and abstraction of the 4 beta-proton by Asp-38 [Xue, L., Talalay, P., & Mildvan, A. S. (1990) Biochemistry 29, 7491-7500]. Primary, secondary, solvent, and combined kinetic deuterium isotope effects have been used to investigate the mechanism of the Y14F mutant, which lacks the proton donor and is 10(4.7)-fold less active catalytically than the wild-type enzyme. With [4 beta-D]androst-5-ene-3,17-dione as a substrate in H2O, a lag in product formation is observed which approaches, by a first-order process, the rate observed with protonated substrate. With the protonated substrate in D2O, a burst in product formation is detected by derivative analysis of the kinetic data which approaches the rate observed with the 4 beta-deuterated substrate in D2O. The absence of such lags or bursts with the protonated substrate in H2O or with the 4 beta-deuterated substrate in D2O, as well as the detection of buffer catalysis by phosphate at pH 6.8, indicates that one or more intermediates dissociate from the enzyme and partition to substrate 31.6 times faster than to product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The three-dimensional structures of Delta5-3-ketosteroid isomerases from two different bacterial species have been determined. The structures reveal an unusually apolar active site, in which each of several competitive inhibitors of the enzyme are held by two hydrogen bonds with the general acids Tyr14 and Asp99, and by hydrophobic interactions. The hydrogen bond between the Tyr14 hydroxyl and the C3 oxyanion of a transition-state analog is a low-barrier hydrogen bond, as indicated by a highly deshielded nuclear magnetic resonance. Structural and other biochemical studies have enabled the proposal of a detailed catalytic mechanism for Delta5-3-ketosteroid isomerase and provided a major thrust towards understanding the mechanism not only in chemical terms but also in energetics terms.  相似文献   

17.
18.
19.
delta 4-3-Ketosteroid 5 beta-reductase was purified about 230-fold from 100,000 X g supernatant of rat liver homogenate using 7 alpha-hydroxy-4-cholesten-3-one as substrate throughout. The purified enzyme was electrophoretically homogeneous, and its molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 37,000 and that determined by gel filtration chromatography on calibrated Sephadex G-100 column was 37,200. The absorption spectrum of the purified enzyme showed only a peak at 276 nm due to aromatic amino acids, precluding the presence of a prosthetic group such as flavine in the molecule. The enzyme is highly labile in a low buffer concentration, but is markedly stabilized in the presence of 20% glycerol in 10 mM phosphate buffer. Higher buffer concentration such as 300 mM potassium phosphate buffer was also effective to prevent deterioration in the absence of glycerol, but the effect was somewhat lower compared to glycerol. The purified enzyme showed the activity toward a variety of substrates including testosterone, cortisol, cortisone, progesterone, 4-androstene-3,17-dione, 7 alpha-hydroxy-4-cholesten-3-one, and 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one. The optimal pH for the 5 beta-reduction of 7 alpha-hydroxy-4-cholesten-3-one was 7.4, and the cofactor required for the reaction was NADPH, while NADH revealed no effect. The enzyme activity was inhibited by p-chloromercuribenzoate, but its inhibition was prevented by the presence of a reduced form of glutathione.  相似文献   

20.
Crystals of the steroid-metabolizing enzyme, delta 5-3-ketosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni, exhibit many enzymatic properties. Each enzyme subunit in the lattice binds a competitive inhibitor, progesterone, with the same stoichiometry (1:1) and affinity (KD = 6 X 10(-6) M) as the enzyme in solution. Another competitive inhibitor, 19-nortestosterone, competes with progesterone for the same binding sites in the crystal. The enzyme crystals catalyze the conversion of delta 5- to delta 4-ketosteroids, but because the enzyme is so efficient, and substrate diffusion into the crystal is so slow, substrate cannot penetrate deeply into the crystal before being converted to product. A general theoretical formulation is presented to account for the effects of substrate diffusion into enzyme crystals of different shapes and sizes. The dependence of apparent mean enzyme activity in steroid isomerase crystals as a function of crystal size is shown to be consistent with this theoretical formulation. These inhibitor binding and catalytic properties suggest that the enzyme is in an active conformation within these crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号