首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visualization of freezing damage. II. Structural alterations during warming   总被引:4,自引:0,他引:4  
H Bank 《Cryobiology》1973,10(2):157-170
There is a growing amount of indirect evidence which suggests that the loss in viability of rapidly cooled cells is due to recrystallization of intracellular ice. This possibility was tested by an evaluation of the formation of morphological artifacts in rapidly cooled cells to determine whether this process can account for the loss in viability. Samples of the common yeast Saccharomyces cerevisiae were frozen at 1.8 or 1500 °C/min, and the structure of the frozen cells was examined by the use of freeze-fracturing techniques. Other cells cooled at the same rate were warmed to temperatures ranging from ?20 ° to ?50 °C and then rapidly cooled to ?196 °C, a procedure that should cause small ice crystals to coalesce by the process of migratory recrystallization. Cells cooled at 1500 °C/min and then warmed to temperatures above ?40 °C formed large intracellular ice crystals within 30 min, and appreciable recrystallization occurred at temperatures as low as ?45 °C. Cells cooled at 1.8 °C/min and warmed to temperatures as high as ?20 °C underwent little structural alteration. These results demonstrate that intracellular ice can cause morphological artifacts. The correlation between the temperature at which rapid recrystallization begins and the temperature at which the cells are inactivated indicates that recrystallization is responsible for the death of rapidly cooled cells.  相似文献   

2.
Human red cells were equilibrated for 30 min at 20 °C in buffered saline containing 2 m glycerol and then frozen to ?196 °C at 0.27, 1.7, 59, 180, 480, 600, and 1300 °C/ min and warmed at 0.47, 1, 26, 160, and 550 °C/min. Cells frozen at 600 and 1300 °C/min responded in the classical fashion for cells containing intracellular ice; i.e., survivals were low when warming was slow (<10%), but increased progressively with increasing warming rate. The sensitivity to slow warming presumably reflects the recrystallization of intracellular ice. Cells frozen at 59 and 180 °C/ min yielded high survivals at all warming rates. This response is also consistent with the findings for other cells cooled just slowly enough to preclude intracellular ice. Cells frozen very slowly at 0.27 and 1.7 °C/ min, however, responded differently; survivals were considerably higher when warming was slow (0.47 or 1 °C/min) than when it was 26, 160, or 550 °C/min. This response is analogous to that observed recently by others in mouse embryos and in higher plant tissue-culture cells and to that observed for many years in higher plants. It also confirms previous observations of Meryman in human red cells. It may reflect osmotic shock from rapid dilution but, if so, the basis of the osmotic shock is uncertain.  相似文献   

3.
Motile unicells of Olisthodiscus lutheus Carter aggregated to form encapsulated masses of nonmotile cells in a benthic stage throughout a temerature range of 15–30°C at salinities o f 10–50%. Motile cells were released from beneathic masses at 10–30°C but at 5°C, cells were not motile and at 0°C cells lysed. Exposure of benthic masses of I day to 8 wk to temperatures of 0–30C in lighted growth chambers resulted in mortality to cells kept below 10°C and normal growth at higher temperatures. Benthic stage cells kept tn darkness at the same temperatures exhibited mortality in all but those at 5 and 10°C. Cells at these thmoeratures remained viable 15 wk in continual darkness. Comparison of cell morphology of matile and benthic stage O. luteus to other Olisthodiscus species and the ecological implications o fthe benthic stage are discussed.  相似文献   

4.
Extracellular freezing injury at high subzero temperatures in human polymorphonuclear cells (PMNs) was studied with a cryomicroscope, electron microscope, and functional assays (phagocytosis, microbicidal activity, and chemotaxis). There are at least four major factors in freezing injury: osmotic stress, chilling, cold shock, and dilution shock. Extracellularly frozen PMNs lose functions when cooled to -2 degrees C without a cryoprotectant. Cells lose volume on freezing to the same degree as in hypertonic exposure. PMNs have a minimum volume to which they can shrink without injury. Greater dehydration produces irreversible injury to cellular functions, and cells eventually collapse under high osmotic stress. Chilling sensitivity is seen in slowly chilled, supercooled PMNs below -5 degrees C; at -7 degrees C, functions are lost in 1 h. This injury can be prevented by the addition of Me2SO but not glycerol. Me2SO does not, however, prevent cold shock (injury due to rapid cooling), which is seen during cooling at 10 degrees C/min to -14 degrees C, but not during slow cooling at 0.5 degrees C/min. One of the problems of using glycerol as a cryoprotectant stems from the high sensitivity of PMNs to dilution shock during the dilution or removal of glycerol.  相似文献   

5.
A physical-chemical analysis of water loss from cells at subzero temperatures had shown that the likelihood of intracellular ice formation increased with increasing cooling rate (22). We have now used a modified version of a unique conductioncooled cryomicroscope stage (8) to observe the freezing of unfertilized mouse ova suspended in dimethyl sulfoxide. Survival measurements showed that the respective survivals of ova were about 65, 56, and 0% when they were cooled at rates of 0.2 to 1.5, 2.5, and 5.4 °C/min. Direct microscopic observation of mouse ova during freezing showed that the respective fractions of cells that froze intracellularly were 13, 72, and 100% when they were cooled at rates of 1.3, 2.9, and 4.8 °C/min or faster. These values agree with those predicted from the physical-chemical analysis for cells the size of mouse ova. The microscopic observations have also shown that intracellular freezing generally occurred at about ?40 to ?45 °C. We had previously observed that mouse embryos must be cooled slowly to ?50 °C or below if they are to survive subsequent rapid cooling to ?196 °C. The observation of intracellular ice formation at ?45 °C supports the interpretation that at temperatures above ?50 °C the embryos still contain water capable of freezing intracellularly.  相似文献   

6.
Brian Harvey 《Cryobiology》1983,20(4):440-447
Single cells from the developing embryo of the zebra fish survive freezing when protected with 1 M DMSO and cooled to ?196 °C in two steps. Cell survival drops from 85 to 26% when clumps of 5–10 cells are similarly frozen, and to 2% when isolated blastoderms are treated in the same way. This drastic decrease in survival is interpreted as an example of the “scale-up problem,” in which diffusional barriers prevent cryoprotectant equilibration and osmotic dehydration in large cell assemblanges.Isolated blastoderms develop considerably in culture, and retain some of this ability following cooling to ?25 °C after protection with DMSO or glycerol.Intact embryos protected with high concentrations of glycerol (2.8 M) tolerate slow cooling to ?196 °C surprisingly well, with most of the embryonic cells morphologically intact and actively extruding lobopodia. Glycerol could, however, only be removed from cells by disrupting the embryo so that diffusional barriers were removed. DMSO (2.8 M) was ineffective in preserving embryos or cells cooled to ?196 °C.  相似文献   

7.
The two-step cooling procedure has been used to investigate factors involved in cell injury. Chinese hamster fibroblasts frozen in dimethylsulphoxide (5%, vv) were studied. Survival was measured using a cell colony assay and simultaneous observations of cellular shrinkage and the localization of intracellular ice were done by an ultrastructural examination of freeze-substituted samples.Correlations were obtained between survival and shrinkage at the holding temperature. However, cells shrunken at ?25 °C for 10 min (the optimal conditions for survival on rapid thawing from ?196 °C) contain intracellular ice nuclei at ?196 °C detectable by recrystallization. These ice nuclei only form below ?80 °C and prevent recovery on slow or interrupted thawing but not on rapid thawing. Cells shrunken at ?35 °C for 10 min (just above the temperature at which intracellular ice forms in the majority of rapidly cooled cells) can tolerate even slow thawing from ?196 °C, suggesting that they contain very few or no ice nuclei even in liquid nitrogen. Damage may correlate with the total amount of ice formed per cell rather than the size of individual crystals, and we suggest that injury occurs during rewarming and is osmotic in nature.  相似文献   

8.
G. Rapatz 《Cryobiology》1973,10(2):181-184
It has been shown that frog hearts, perfused with gradually increasing concentrations of ethylene glycol (to 11 m) as the temperature was gradually lowered to ?55 °C and then cooled abruptly to ?78 °C, resumed spontaneous contractions when rewarmed. The thin-walled sinus venosus and atria showed significantly better recovery than the thick-walled ventricle. It was suggested that the difference in recovery of the various parts of the heart might be related to the degree of penetration of the glycol into the tissue. In an attempt to achieve better penetration during perfusion, in particular at subzero temperatures, methanol was substituted for glycol in the perfusate. Hearts equilibrated at room temperature in nontoxic concentrations of methanol were perfused with gradually increasing concentrations as the specimen was gradually cooled to various temperatures. The hearts were gradually rewarmed, and during the rewarming the concentrations of methanol in the perfusate was gradually reduced. All hearts resumed spontaneous rhythmic contractions providing they were not cooled to below ?30 °C or perfused with methanol solutions exceeding 10 m concentration. Cooling to lower temperatures and exposure to higher concentrations of methanol did not permit recovery. These results show that at temperatures as low as ?30 °C methanol in concentrations up to 10 m is comparable to ethylene glycol in its ability to protect hearts from cryoinjury. Its failure to protect at lower temperatures may be related to the development of toxic concentrations when water is removed in the form of ice.  相似文献   

9.
R.H. Ruby 《BBA》1974,368(1):1-8
Delayed fluorescence has been observed from Chlorella whole cells at 0.5 ms following flash excitation and at temperatures from 293 °K to 120 °K. Cells which are cooled while pre-illuminated before flashes produce less observed delayed fluorescence than cells cooled without pre-illumination. There exists a small component of delayed fluorescence whose magnitude is independent of pre-illumination effects. The effect of pre-illumination upon delayed fluorescence emission is eliminated by prior freezing of the algae.  相似文献   

10.
Bacillus megaterium grows in the form of filaments at temperatures above 45°C. The rate of turnover of the cell wall begins to decrease gradually under these conditions. At the same time sensitivity of the filamentous forms to lysozyme decreases. Filaments outgrown at 48°C retain the decreased rate of turnover of the cell wall for a certain time after transfer to 30°C, in spite of the fact that septa are formed and filaments are converted to cells. However, a population incubated longer than 2 h at 48°C often ceases to grow and the growth is not restored even after transfer to 30°C. Three clones of the asporogenic strainBacillus megaterium KM differing somewhat in their ability to form filaments at 35°C differ mutually also in the rate of turnover of the cell wall. However, the decreased rate of the turnover cannot be unambiguously correlated with the increased tendency to form filaments.  相似文献   

11.
Previous studies have demonstrated that glycerol does not have to permeate bovine red cells to protect them against subsequent freezing and thawing. The present study is concerned with the relation between solute permeation and freezing injury of human red cells. Cells were held in 2 m glycerol for 30 sec to 10 min at 0 °C and then frozen to ?196 °C at 60 °C/min. Cells cooled at this rate have a very low probability of undergoing intracellular freezing. Percent survivals (≡percent unhemolyzed) increased by 21% (from 66 to 80%) over the first 3-min period. Extrapolation to zero time (and zero glycerol permeation) yields a survival of 57%. Between 30 sec and 3 min the calculated osmolal ratio of intracellular glycerol to other solutes increased 240% (from 2.5 to 5.7). The human red cell is impermeable to sucrose at 0 °C. Cells suspended in 1.40 m sucrose (equiosmolal to 2.0 m glycerol) for 0.5 to 10 min prior to freezing yielded as high survivals after thawing as did cells in glycerol.These data indicate that prior permeation of additive is not a prerequisite for the survival of red cells subjected to subsequent freezing and thawing. Although sucrose and glycerol protect equally well to this point, differences appear when attempts are made to remove the additive. Over 90% of the cells survive the removal of glycerol. Only some 30% survive the removal of sucrose. Cells frozen in an equisomolal solution of sodium chloride do not even survive the initial freezing and thawing.The findings indicate that slow freezing injury cannot be accounted for in terms of the attainment of a critical minimum volume, nor can it be considered to be equivalent to posthypertonic hemolysis.  相似文献   

12.
Optimal temperature ranges for control of cooling rate.   总被引:1,自引:0,他引:1  
L E McGann 《Cryobiology》1979,16(3):211-216
Survival of hamster fibroblasts following cooling at 1 °C/min to various subzero temperatures in the presence of penetrating or nonpenetrating cryoprotective agents was examined. In the presence of nonpenetrating agents maximum recovery was obtained when the cooling rate was controlled between ?5 and ?20 °C followed by rapid cooling to ?196 °C. For penetrating agents recovery was maximal in samples cooled at 1 °C/min to ?30 °C or lower. These different temperature ranges for maximum recovery indicate different modes of actions of penetrating and nonpenetrating cryoprotective agents. The action of penetrating agents appear to be based on their colligative properties. Nonpenetrating agents may promote electrolyte leaks out of the cell and a corresponding osmotic efflux of cell water during slow cooling, thereby reducing the amount of intracellular ice present at ?196 °C.  相似文献   

13.
D W Janssen  F F Busta 《Cryobiology》1973,10(5):386-392
Fast freezing and slow thawing of Salmonella anatum cells in nonfat milk solids resulted in about 20% death and 50% injury of the cells surviving the treatment. Death was defined as the inability to form colonies on a nonselective plating medium [xylose-lysine-peptone agar (XLP)] after freezing and thawing. Injury was defined as the inability to form colonies on a selective plating medium (XLP with 0.2% sodium desoxycholate added). The injured cells repaired rapidly and within 2 hr at 25 °C, in the presence of 0.1% milk solids; all the injured cells regained the ability to form colonies on the selective medium. The treated cells showed a 1-hr extended lag phase of growth as compared to the unfrozen cells. Milk solids concentration in the freezing and repair menstrua influenced injury, repair of injury, and death. The repair process was affected by the pH and temperature of environment in which the injured cells were incubated. Maximum repair occurred at pH values between 6.0 and 7.4 and temperatures from 25 to 42 °C. The data suggested repair did not require the synthesis of protein, ribonucleic acid, or cell-wall mucopeptide but did require energy synthesis.  相似文献   

14.
Abstract The expression and distribution of fumarate reductase activity was examined in Shewanella putrefaciens MR-1. Fumarate reductase was expressed at very low levels in aerobically grown cell and was markedly induced by growth under anaerobic conditions. Cells were fractionated into soluble and purified membrane components by four different methods. For all four methods used, and in marked contrast to the membrane-bound fumarate reductases of other bacteria, ≧ 98% of the fumarate reductase activity was localized in the soluble fraction. In cells subjected to osmotic shock or treated with lysozyme and EDTA to form spheroplasts, the specific activity of fumarate reductase was highest in the periplasmic fraction, while the majority of total fumarate reductase activity was in the cytoplasmic fraction.  相似文献   

15.
1. Analysis of 28 years of weather data for the Sierra Madre Occidentals of Mexico showed that while flight, mating, and oviposition of the social caterpillar Eucheira socialis (Lepidoptera: Pieridae) occurred in the warmest and wettest months, much of the caterpillar’s feeding and growth occurred in the winter when nocturnal temperatures often fell below 0 °C. 2. Although daytime temperatures at the study site in midwinter were markedly warmer than overnight temperatures, colonies remained sequestered in their bolsas by day. Caterpillars initiated activity shortly after the onset of darkness and foraged overnight at temperatures as low as ? 2 °C. The remarkably low chill‐coma temperature recorded for this species has been reported previously only for a sub‐Antarctic caterpillar. 3. Temperature measurements on sunny days showed the interiors of bolsas to be thermally heterogeneous, with an average differential of 12 °C between the warmest and coolest regions of the structure. Although caterpillars clustered within the bolsas had body temperatures significantly greater than ambient, they exhibited voluntary hypothermia by day, seeking out and resting in the coolest pockets of the bolsas. 4. Voluntary hypothermia may influence growth rate adaptively and prevent acclimatisation to daytime temperatures that would have a negative effect on the caterpillar’s ability to locomote at low overnight temperatures.  相似文献   

16.
The interaction of lysozyme with mixed 1,2-dipalmitoyl-l-phosphatidic acid/1,2-dimyristoyl-l-phosphatidylcholine liposomes was investigated by laser Raman spectroscopy. Substantial changes were observed in the spectra of both the lipid and protein in the mixed liposomes over the range 10–62°C. At temperatures below 27°C, interaction with lipid appears to slightly increase the amount of helical structure in lysozyme at the expense of random conformation. At temperatures above 30°C, considerable β-sheet is irreversibly formed. Onset of β-formation appears to coincide with the formation of disordered lipid side-chains in the acidic component of the lipid.At all temperatures, the O-P-O diester stretching mode at 782 cm?1 is much more intense in the lipid/protein mixture than in lipid alone. It is observed that the dimyristoyl phosphatidylcholine chain-disorder transition is lowered by 3°C, while that of the phosphatidic acid is lowered by 12°C, yet the post-transition conformation contains a significantly higher proportion of trans-segments in the presence of lysozyme.These results are interpreted in terms of: (1) a polar interaction between acidic phospholipid and lysozyme at temperatures below either chain-disorder transition, in which lysozyme is essentially excluded from the hydrophobic portion of the lipid and (2) an interaction at higher temperatures which involves the lipid side-chains of dipalmitoyl phosphatidic acid in the disordered state and is manifested by a substantial conformational change.  相似文献   

17.
Cells of the pathogenic yeast Candida albicans accumulate as unbudded singlets at stationary phase in defined medium at 25 °C. When released into fresh medium at 37 °C and pH 6.5, these cells will synchronously form elongate pseudomycelia, and when released into fresh medium at either 25 °C, pH 6.5, or 37 °C, pH 4.5, they will synchronously form buds. Using pH and temperature shift experiments, we have examined when cells become committed to pseudomycelium formation and bud formation under conditions conducive to each growth form respectively. It is demonstrated that in either case commitment occurs long after release from stationary phase, at approximately the same time the first evagination is visible on the cell's surface. In addition, it is demonstrated that once a released cell has formed a bud, it and its progeny lose the capacity to form pseudomycelia until they re-enter stationary phase; on the other hand, elongating pseudomycelia retain the capacity to form buds. The possible relationships of the commitment events to septation and to the cell cycle are discussed.  相似文献   

18.
To avoid intracellular freezing and its usually lethal consequences, cells must lose their freezable water before reaching their ice-nucleation temperature. One major factor determining the rate of water loss in the temperature dependence of the water permeability,L p (hydraulic conductivity). Because of the paucity of water permeability measurements at subzero temperatures, that temperature dependence has usually been extrapolated from above-zero measurements. The extrapolation has often been based on an exponential dependence ofL p on temperature. This paper compares the kinetics of water loss based on that extrapolation with that based on an Arrhenius relation betweenL p and temperature, and finds substantial differences below ?20 to ?25°C. Since the ice-nucleation temperature of mouse ova in the cryoprotectants DMSO and glycerol is usually below ?30°C, the Arrhenius form of the water-loss equation was used to compute the extent of supercooling in ova cooled at rates between 1 and 8°C/min and the consequent likelihood of intracellular freezing. The predicted likelihood agrees well with that previously observed. The water-loss equation was also used to compute the volumes of ova as a function of cooling rate and temperature. The computed cell volumes agree qualitatively with previously observed volumes, but differ quantitatively.  相似文献   

19.
Previously we showed that > 70% of mouse spermatozoa cooled slowly from 37°C to 4°C and warmed have undergone capacitation-like changes as examined by a chlortetracycline staining assay. These membrane changes are reflected in the ability of cooled spermatozoa to achieve fertilization rates in vitro similar to those of uncooled controls when added to oocytes immediately upon warming. The aim of this study was to determine the nature of these membrane changes. We found they were not dependent upon the rate of cooling to 4°C and similar changes were observed when spermatozoa were cooled to higher temperatures (10° and 20°C), but it took longer for 50% of the spermatozoa to undergo such changes (3, 18, and 27 min for spermatozoa held at 4°, 10°, and 20°C, respectively). Mixing cooled spermatozoa with oocytes immediately upon warming produced fertilization rates similar to fresh spermatozoa capacitated in vitro for 90 min before the oocytes were added. The rate of sperm penetration as determined by the fluorescent DNA stain Hoescht 33258 was also similar. However, the penetration time for cooled spermatozoa was significantly shortened when they were preincubated for 90 min before being added to oocytes. We conclude that membrane changes resembling capacitation (1) occur during cooling to temperatures above freezing, (2) are independent of cooling rate, (3) proceed faster at lower temperatures, and (4) obviate the need for prior capacitation in vitro before mixing with oocytes. Mol. Reprod. Dev. 46:318–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Studies of the marine green flagellate Dunaliella tertiolecta have confirmed and extended previous observations of Steemann Nielsen and his colleagues. Algae, grown at 12°C, assimilated carbon dioxide under light-saturated conditions more rapidly than did those grown at 20°C; for both, the assimilation rate being higher at 20°C than at 12°C. Cells grown at the lower temperature contained higher concentrations of soluble protein, higher activities of ribulose diphosphate carboxylase and showed an enhanced relative rate of protein synthesis during the photosynthetic assimilation of carbon dioxide. This appears to represent true adaptation since it allowed the growth rate at 12°C to be almost the same as that at 20°C. Studies of the marine diatom Phaeodactylum tricornutum have not revealed the same picture of temperature adaptation. Cultures grown at 5°C had significantly higher rates of photosynthesis than did those grown at 10°C, but the same was not true when algae grown at 10°C were compared with those grown at 20°C. In this organism, growth at the lower temperatures reduced its ability to photosynthesize at 20°C. Cells grown at the lower temperatures contained more protein than did those grown at 20°C; this was particularly marked in cells growing at 5°C, a temperature which reduced the growth rate. The relative rate of protein synthesis was higher in Phaeodactylum grown at lower temperatures; but this difference was most marked when the measurements were made at 20°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号