首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on miR‐874 expression levels in the GSE47841 microarray, we hypothesized that the mature products of miR‐874, miR‐874‐3p, or miR‐874‐5p, would inhibit epithelial ovarian cancer (EOC) cell proliferation, metastasis, and chemoresistance. We first examined miR‐874‐3p and miR‐874‐5p expression levels in primary EOC tumor tissue samples and found that they were significantly decreased. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation and transwell assays revealed that miR‐874‐3p and miR‐874‐5p significantly inhibit EOC cell proliferation, migration, and invasion. Then, using MTT and soft agar assays of paclitaxel‐treated Caov3 and SKOV3 cells transfected with miR‐874‐3p and miR‐874‐5p, we found that miR‐874‐3p and miR‐874‐5p enhance EOC cell chemosensitivity. We then confirmed that serine/threonine‐protein kinase 2 (SIK2) was a target gene of miR‐874‐3p and miR‐874‐5p. Overall, the results of this study indicate that SIK2 expression can serve as a prognostic biomarker for EOC and that miR‐874‐3p and miR‐874‐5p have the potential to enhance clinical treatment of EOC.  相似文献   

2.
3.
Accumulating studies supported that lncRNAs played important roles in tumorigenesis. LncRNA HOXA11‐AS was a novel lncRNA that has been proved to involved in several tumours. However, the role of HOXA11‐AS in the development of hepatocellular carcinoma (HCC) remains to be explained. In our study, we showed that HOXA11‐AS expression was up‐regulated in the HCC tissues, and the higher expression of HOXA11‐AS was associated with the advanced stage in the HCC samples. In addition, we indicated that the expression of HOXA11‐AS was up‐regulated in HCC cell lines (Hep3B, SMMC‐7721, MHCC97‐H and BEL‐7402) compared with normal liver cell lines (HL‐7702). Overexpression of HOXA11‐AS promoted HCC proliferation and invasion and induced the epithelial‐mesenchymal transition (EMT) and knockdown of HOXA11‐AS suppressed the HCC cell proliferation and invasion. However, we showed that miR‐214‐3p expression was down‐regulated in the HCC tissues and cell lines. Ectopic expression of miR‐214‐3p suppressed HCC cell proliferation and invasion. Furthermore, we indicated that overexpression of HOXA11‐AS decreased the miR‐214‐3p expression and the expression of miR‐214‐3p was negatively related with the HOXA11‐AS expression in HCC samples. Ectopic expression of HOXA11‐AS increased HCC proliferation and invasion and induced EMT through inhibiting miR‐214‐3p expression. These data suggested that HOXA11‐AS/miR‐214‐3p axis was responsible for development of HCC.  相似文献   

4.
5.
MiRNAs are fine‐tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co‐twin case–control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen‐based hormone replacement therapy (HRT) to explore estrogen‐dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54–62‐years‐old monozygotic female twin pairs discordant for HRT (median 7 years). MCF‐7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR‐182, miR‐223 and miR‐142‐3p expressions in HRT using than in their nonusing co‐twins. Insulin/IGF‐1 signaling emerged one common pathway targeted by these miRNAs. IGF‐1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR‐182 and miR‐223 on IGF‐1R and FOXO3A mRNA as well as a dose‐dependent miR‐182 and miR‐223 down‐regulations concomitantly with up‐regulation of FOXO3A and IGF‐1R expression. Novel finding is the postmenopausal HRT‐reduced miRs‐182, miR‐223 and miR‐142‐3p expression in female skeletal muscle. The observed miRNA‐mediated enhancement of the target genes' IGF‐1R and FOXO3A expression as well as the activation of insulin/IGF‐1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women.  相似文献   

6.
Peripheral blood mononuclear cells (PBMCs) play important roles in the pathogenesis of IgA nephropathy (IgAN). Our study aimed to provide a deep understanding of IgAN and focused on the dysregulation of hsa‐miR‐590‐3p and its target gene HMGB2 in PBMCs. Three gene expression profile datasets (GSE14795, GSE73953 and GSE25590) were downloaded from the GEO database. The DEGs (differentially expressed genes)‐miRNA network that was associated with IgAN was constructed by Cytoscape, and HMGB2 and hsa‐miR‐590‐3p were selected for further exploration. The dual‐luciferase reporter system was utilized to verify their interaction. Then, the expression levels of HMGB2 and hsa‐miR‐590‐3p in PBMCs were detected by qPCR in another cohort, and the correlation of their expression levels with the clinical pathological manifestations and serum Gd‐IgA1(galactose‐deficient IgA1) levels was also investigated. HMGB2 was identified as the target gene of hsa‐miR‐590‐3p. Furtherly, the elderly patients had higher HMGB2 expression levels than the expression levels of the younger patients. As the serum creatinine, serum BUN levels increased, the expression of HMGB2 decreased; Besides, the HMGB2 expression was positively correlated with serum complement 3(C3) levels, and it also had a negative correlation with the diastolic blood pressure, but not reach statistical significance. What is more, both hsa‐miR‐590‐3p and HMGB2 expression had a slight correlation tendency with serum Gd‐IgA1 levels in the whole population. In conclusion, HMGB2, the target gene of hsa‐miR‐590‐3p, was identified to correlate with the severity of IgAN, and this provides more clues for the pathogenesis of IgAN.  相似文献   

7.
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.  相似文献   

8.
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.  相似文献   

9.
Blood circulating microRNAs (c‐miRs) are potential biomarkers to trace aging and longevity trajectories to identify molecular targets for anti‐aging therapies. Based on a cross‐sectional study, a discovery phase was performed on 12 donors divided into four groups: young, old, healthy, and unhealthy centenarians. The identification of healthy and unhealthy phenotype was based on cognitive performance and capabilities to perform daily activities. Small RNA sequencing identified 79 differentially expressed c‐miRs when comparing young, old, healthy centenarians, and unhealthy centenarians. Two miRs, that is, miR‐19a‐3p and miR‐19b‐3p, were found increased at old age but decreased at extreme age, as confirmed by RT‐qPCR in 49 donors of validation phase. The significant decrease of those miR levels in healthy compared to unhealthy centenarians appears to be due to the presence of isomiRs, not detectable with RT‐qPCR, but only with a high‐resolution technique such as deep sequencing. Bioinformatically, three main common targets of miR‐19a/b‐3p were identified, that is, SMAD4, PTEN, and BCL2L11, converging into the FoxO signaling pathway, known to have a significant role in aging mechanisms. For the first time, this study shows the age‐related increase of plasma miR‐19a/b‐3p in old subjects but a decrease in centenarians. This decrease is more pronounced in healthy centenarians and was confirmed by the modified pattern of isomiRs comparing healthy and unhealthy centenarians. Thus, our study paves the way for functional studies using c‐miRs and isomiRs as additional parameter to track the onset of aging and age‐related diseases using new potential biomarkers.  相似文献   

10.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

11.
Aging impairs the functions of human mesenchymal stem cells (MSCs), thereby severely reducing their beneficial effects on myocardial infarction (MI). MicroRNAs (miRNAs) play crucial roles in regulating the senescence of MSCs; however, the underlying mechanisms remain unclear. Here, we investigated the significance of miR‐155‐5p in regulating MSC senescence and whether inhibition of miR‐155‐5p could rejuvenate aged MSCs (AMSCs) to enhance their therapeutic efficacy for MI. Young MSCs (YMSCs) and AMSCs were isolated from young and aged donors, respectively. The cellular senescence of MSCs was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. Compared with YMSCs, AMSCs exhibited increased cellular senescence as evidenced by increased SA‐β‐gal activity and decreased proliferative capacity and paracrine effects. The expression of miR‐155‐5p was much higher in both serum and MSCs from aged donors than young donors. Upregulation of miR‐155‐5p in YMSCs led to increased cellular senescence, whereas downregulation of miR‐155‐5p decreased AMSC senescence. Mechanistically, miR‐155‐5p inhibited mitochondrial fission and increased mitochondrial fusion in MSCs via the AMPK signaling pathway, thereby resulting in cellular senescence by repressing the expression of Cab39. These effects were partially reversed by treatment with AMPK activator or mitofusin2‐specific siRNA (Mfn2‐siRNA). By enhancing angiogenesis and promoting cell survival, transplantation of anti‐miR‐155‐5p‐AMSCs led to improved cardiac function in an aged mouse model of MI compared with transplantation of AMSCs. In summary, our study shows that miR‐155‐5p mediates MSC senescence by regulating the Cab39/AMPK signaling pathway and miR‐155‐5p is a novel target to rejuvenate AMSCs and enhance their cardioprotective effects.  相似文献   

12.
Inflammation, apoptosis, and oxidative stress are involved in septic liver dysfunction. Herein, the role of miR‐103a‐3p/FBXW7 axis in lipopolysaccharides (LPS)‐induced septic liver injury was investigated in mice. Hematoxylin‐eosin staining was used to evaluate LPS‐induced liver injury. Quantitative real‐time polymerase chain reaction was performed to determine the expression of microRNA (miR) and messenger RNA, and western blot analysis was conducted to examine the protein levels. Dual‐luciferase reporter assay was used to confirm the binding between miR‐103a‐3p and FBXW7. Both annexin V‐fluoresceine isothiocyanate/propidium iodide staining and caspase‐3 activity were employed to determine cell apoptosis. First, miR‐103a‐3p was upregulated in the septic serum of mice and patients with sepsis, and miR‐103a‐3p was elevated in the septic liver of LPS‐induced mice. Then, interfering miR‐103a‐3p significantly decreased apoptosis by suppressing Bax expression and upregulating Bcl‐2 levels in LPS‐induced AML12 and LO2 cells, and septic liver of mice. Furthermore, inhibition of miR‐103a‐3p repressed LPS‐induced inflammation by downregulating the expression of tumor necrosis factor, interleukin 1β, and interleukin 6 in vitro and in vivo. Meanwhile, interfering miR‐103a‐3p obviously attenuated LPS‐induced overactivation of oxidation via promoting expression of antioxidative enzymes, including catalase, superoxide dismutase, and glutathione in vitro and in vivo. Moreover, FBXW7 was a target of miR‐103a‐3p, and overexpression of FBXW7 significantly ameliorated LPS‐induced septic liver injury in mice. Finally, knockdown of FBXW7 markedly reversed anti‐miR‐103a‐3p‐mediated suppression of septic liver injury in mice. In conclusion, interfering miR‐103a‐3p or overexpression of FBXW7 improved LPS‐induced septic liver injury by suppressing apoptosis, inflammation, and oxidative reaction.  相似文献   

13.
Atrial fibrillation (AF) is the most common type of arrhythmia in cardiovascular diseases. Atrial fibrosis is an important pathophysiological contributor to AF. This study aimed to investigate the role of the clustered miR‐23b‐3p and miR‐27b‐3p in atrial fibrosis. Human atrial fibroblasts (HAFs) were isolated from atrial appendage tissue of patients with sinus rhythm. A cell model of atrial fibrosis was achieved in Ang‐II‐induced HAFs. Cell proliferation and migration were detected. We found that miR‐23b‐3p and miR‐27b‐3p were markedly increased in atrial appendage tissues of AF patients and in Ang‐II‐treated HAFs. Overexpression of miR‐23b‐3p and miR‐27b‐3p enhanced the expression of collagen, type I, alpha 1 (COL1A1), COL3A1 and ACTA2 in HAFs without significant effects on their proliferation and migration. Luciferase assay showed that miR‐23b‐3p and miR‐27b‐3p targeted two different sites in 3?‐UTR of transforming growth factor (TGF)‐β1 receptor 3 (TGFBR3) respectively. Consistently, TGFBR3 siRNA could increase fibrosis‐related genes expression, along with the Smad1 inactivation and Smad3 activation in HAFs. Additionally, overexpression of TGFBR3 could alleviate the increase of COL1A1, COL3A1 and ACTA2 in HAFs after transfection with miR‐23b‐3p and miR‐27b‐3p respectively. Moreover, Smad3 was activated in HAFs in response to Ang‐II treatment and inactivation of Smad3 attenuated up‐regulation of miR‐23b‐3p and miR‐27b‐3p in Ang‐II‐treated HAFs. Taken together, these results suggest that the clustered miR‐23b‐3p and miR‐27b‐3p consistently promote atrial fibrosis by targeting TGFBR3 to activate Smad3 signalling in HAFs, suggesting that miR‐23b‐3p and miR‐27b‐3p are potential therapeutic targets for atrial fibrosis.  相似文献   

14.
The transition from liver fibrosis to hepatocellular carcinoma (HCC) has been suggested to be a continuous and developmental pathological process. MicroRNAs (miRNAs) are recently discovered molecules that regulate the expression of genes involved in liver disease. Many reports demonstrate that miR‐483‐5p and miR‐483‐3p, which originate from miR‐483, are up‐regulated in HCC, and their oncogenic targets have been identified. However, recent studies have suggested that miR‐483‐5p/3p is partially down‐regulated in HCC samples and is down‐regulated in rat liver fibrosis. Therefore, the aberrant expression and function of miR‐483 in liver fibrosis remains elusive. In this study, we demonstrate that overexpression of miR‐483 in vivo inhibits mouse liver fibrosis induced by CCl4. We demonstrate that miR‐483‐5p/3p acts together to target two pro‐fibrosis factors, platelet‐derived growth factor‐β and tissue inhibitor of metalloproteinase 2, which suppress the activation of hepatic stellate cells (HSC) LX‐2. Our work identifies the pathway that regulates liver fibrosis by inhibiting the activation of HSCs.  相似文献   

15.
We examined the effect of plasma incubation from preeclampsia pregnant on the antiangiogenic miR‐195‐5p expression. Higher miR‐195‐5p expression was found in cultures incubated with preeclampsia plasma compared to those incubated with healthy pregnant plasma. Next, as VEGF is a target of miR‐195‐5p we have quantified its expression by real‐time qPCR and ELISA. We found reduced VEGF levels in culture incubated with preeclampsia plasma. Therefore, we have concluded that the higher expression of miR‐195‐5p in endothelial cell cultures incubated with preeclampsia plasma may contribute to decreased expression of VEGFA (gene and protein) and increased antiangiogenic status in preeclampsia. Therefore, this miR may be an important target in preeclampsia.  相似文献   

16.
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.  相似文献   

17.
HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic miRNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR‐483‐3p along with its host gene IGF2 (Insulin‐like growth factor 2) was found down‐regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR‐483‐3p via dual‐luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SH‐SY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR‐483‐3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR‐483‐3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 siRNA may inverse the function of miR‐483‐3p inhibitor. This study revealed that miR‐483‐3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.  相似文献   

18.
Long noncoding RNA (lncRNA) has been suggested to play an important role in a variety of diseases over the past decade. In a previous study, we identified a novel lncRNA, termed HOXA11‐AS, which was significantly up‐regulated in calcium oxalate (CaOx) nephrolithiasis. However, the biological function of HOXA11‐AS in CaOx nephrolithiasis remains poorly defined. Here, we demonstrated that HOXA11‐AS was significantly up‐regulated in CaOx nephrolithiasis both in vivo and in vitro. Gain‐/loss‐of‐function studies revealed that HOXA11‐AS inhibited proliferation, promoted apoptosis and aggravated cellular damage in HK‐2 cells exposed to calcium oxalate monohydrate (COM). Further investigations showed that HOXA11‐AS regulated monocyte chemotactic protein 1 (MCP‐1) expression in HK‐2 cell model of CaOx nephrolithiasis. In addition, online bioinformatics analysis and dual‐luciferase reporter assay results showed that miR‐124‐3p directly bound to HOXA11‐AS and the 3'UTR of MCP‐1. Furthermore, rescue experiment results revealed that HOXA11‐AS functioned as a competing endogenous RNA to regulate MCP‐1 expression through sponging miR‐124‐3p and that overexpression of miR‐124‐3p restored the inhibitory effect of proliferation, promotion effects of apoptosis and cell damage induced by HOXA11‐AS overexpression. Taken together, HOXA11‐AS mediated CaOx crystal–induced renal inflammation via the miR‐124‐3p/MCP‐1 axis, and this outcome may provide a good potential therapeutic target for nephrolithiasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号