首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containing forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 microM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 microM and 85-120 microM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 microM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO and nitroso compounds.  相似文献   

2.
The mechanism of activation of soluble guanylate cyclase purified from bovine lung by high molecular weight, nitrosyl-hemoprotein complexes is reported. Heme-containing, heme-deficient, and heme-reconstituted forms of guanylate cyclase were studied. Nitric oxide (NO) and nitroso compounds activated heme-containing and heme-reconstituted enzymes (over 50-fold), with an accompanying shift in the Soret absorption peak from 431 to 398 nm, but failed to activate or alter the spectral characteristics of heme-deficient enzyme. In contrast, preformed NO-hemoprotein complexes as well as low molecular weight NO-heme activated all forms of guanylate cyclase. Heme-deficient guanylate cyclase was first reacted with excess amounts of NO-hemoglobin, NO-myoglobin, or NO-catalase and then rapidly separated from the NO-hemoprotein by column chromatography. Spectrophotometric analysis indicated that the NO-heme moiety was transferred from each of the NO-hemoproteins to heme-deficient guanylate cyclase. Approximately 1 mol of NO-heme was bound per mol of holoenzyme and the specific activity of this enzyme form was over 50-fold greater than that of unreacted, heme-deficient enzyme. NO-heme was tightly bound to guanylate cyclase as no transfer of enzyme-bound NO-heme to apohemoglobin was evident. Enzyme activated by NO-hemoproteins closely resembled, kinetically, that activated by NO or NO-heme. In contrast, reactions between heme-deficient guanylate cyclase and hemoproteins did not result in heme transfer, whereas heme alone rapidly reconstituted the enzyme. These observations indicate that soluble guanylate cyclase can be readily reconstituted with, and thereby activated by, NO-heme through an exchange reaction with NO-hemoproteins.  相似文献   

3.
Nitric oxide (NO) mediates intercellular signaling through activation of its receptor, soluble guanylyl cyclase (sGC), leading to elevation of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP) levels. Through this signal transduction pathway, NO regulates a diverse range of physiological effects, from vasodilatation and platelet disaggregation to synaptic plasticity. Measurement of sGC activity has traditionally been carried out using end-point assays of cGMP accumulation or by transfection of cells with “detector” proteins such as fluorescent proteins coupled to cGMP binding domains or cyclic nucleotide gated channels. Here we report a simpler approach: the use of a fluorescently labeled substrate analog, mant-GTP (2′-O-(N-methylanthraniloyl) guanosine 5′-triphosphate), which gives an increase in emission intensity after enzymatic cyclization to mant-cGMP. Activation of purified recombinant sGC by NO led to a rapid rise in fluorescence intensity within seconds, reaching a maximal 1.6- to 1.8-fold increase above basal levels. The sGC inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), eliminated the fluorescence increase due to NO, and the synergistic activator of sGC, BAY 41-2272 (3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine), increased the rate at which the maximal fluorescence increase was attained. High-performance liquid chromatography (HPLC) confirmed the formation of mant-cGMP product. This real-time assay allows the progress of purified sGC activation to be quantified precisely and, with refinement, could be optimized for use in a cellular environment.  相似文献   

4.
The influence of adrenochrome and YC-1 activation of human platelet soluble guanylate cyclase was investigated. Adrenochrome (0.1–10.0 μM) had no effect on the basal activity, but it potentiated in a concentration- dependent manner the spermine NONO-induced activation of this enzyme. Adrenochrome also sensitized guanylate towards nitric oxide (NO) and produced the leftward shift of the spermine NONO concentration response curve. Addition of adrenochrome decreased the YC-1-induced leftward shift of the spermine NONO concentration response curve. Adrenochrome also inhibited enzyme activation byYC-1. Thus, synergistic activation of NO-stimulated guanylate cyclase activity by adrenochrome represents a new biochemical effect of this compound and indicates that adrenochrome may act as an endogenous regulator of the NO-dependent stimulation of soluble guanylate cyclase. This new property of adrenochrome, similar to YC-1 but more effective, should be taken into consideration especially under conditions of adrenochrome overproduction in the body.  相似文献   

5.
High yield purification of soluble guanylate cyclase from bovine lung   总被引:1,自引:1,他引:0  
Soluble guanylate cyclase (sGC), the main target of nitric oxide (NO), is a cytosolic, heme-containing, heterodimeric enzyme that catalyzes the conversion of guanosine 5′-triphosphate (GTP) to 3,5′-cyclic guanosine monophosphate (cGMP) and pyrophosphate (PPi) in the presence of Mg2+. Cyclic GMP is then involved in transmitting the NO activating signals to a variety of downstream effectors such as cyclic-nucleotide-gated channels, protein kinases, and phosphodiesterases. In this work, sGC has been purified from bovine lung. The lungs were subjected to grinding and extraction with buffer at physiological pH followed by centrifugation. The resulting solution was subjected to successive column chromatography on DEAE- and Q-Sepharose, Ceramic Hydroxyapatite, Resource Q, and GTP–agarose. The purified enzyme migrated as a two-band protein on SDS–PAGE corresponding to sGC subunits α (Mr = 77,532) and β (Mr = 70,500) and had an A280nm/A430nm of 1 indicating one heme per heterodimer. The yield of enzyme was 8–10 mg from 4 to 5 kg bovine lungs. Vmax and Km of non-stimulated sGC were 22 nmol/mg/min and 180 μM, respectively. Upon stimulation with the NO donor 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene, the Vmax increased to 1330 nmol/mg/min while the Km dropped to 43 μM. The quality and quantity of enzyme make it suitable for studies to probe the structure and catalytic mechanism of this enzyme and for research related to drug discovery.  相似文献   

6.
The activity of the calcium/calmodulin-regulated guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from Paramecium was stimulated by several polypeptides. The most potent activator was melittin (6-fold at 30 μM), followed by alamethicin, suzukacillin, trichotoxin and gramicidin S. Marginal effects were seen with herbicolin A and polymyxin B, whereas the following compounds had no effect: ionophore A23187, actinomycin C1, destomycin A, gramicidin A, iturin A, nigericin, nonactin, Tü 1718B, valinomycin and synthetic peptide analogues of alamethicin. Guanylate cyclase activation was not related to ion-transport capacity or to the length of the α-helical segments. Rather, the degree of amphiphilicity seemed to be an important criterion. No difference in activation was seen between native guanylate cyclase and the reconstituted enzyme. Thus, in all likelihood, polypeptide stimulation requires the presence of the guanylate cyclase/calmodulin holo-enzyme. Guanylate cyclase activation was permanent. Enzyme kinetics, such as Michaelis-Menten behavior and non-cooperativity, were retained. Incubation with polypeptides at 37°C prior to substrate addition decreased enzyme stimulation. Activation of cGMP formation as enhanced at elevated incubation temperatures. The activation energy for hemolysis of erythrocytes favorably correlated with the extent of guanylate cyclase activation (r = 0.98), suggesting a similar mechanism of interaction with membrane constituents for both processes.  相似文献   

7.
Nitric oxide (NO) is a free radical involved in many physiological processes including regulation of blood pressure, immune response, and neurotransmission. However, the measurement of extremely low, in some cases subnanomolar, physiological concentrations of nitric oxide presents an analytical challenge. The purpose of this methods article is to introduce a new highly sensitive chemiluminescence approach to direct NO detection in aqueous solutions using a natural nitric oxide target, soluble guanylyl cyclase (sGC), which catalyzes the conversion of guanosine triphosphate to guanosine 3′,5′-cyclic monophosphate and inorganic pyrophosphate. The suggested enzymatic assay uses the fact that the rate of the reaction increases by about 200 times when NO binds with sGC and, in so doing, provides a sensor for nitric oxide. Luminescence detection of the above reaction is accomplished by converting inorganic pyrophosphate into ATP with the help of ATP sulfurylase followed by light emission from the ATP-dependent luciferin–luciferase reaction. Detailed protocols for NO quantification in aqueous samples are provided. The examples of applications include measurement of NO generated by a nitric oxide donor (PAPA-NONOate), nitric oxide synthase, and NO gas dissolved in buffer. The method allows for the measurement of NO concentrations in the nanomolar range and NO generation rates as low as 100 pM/min.  相似文献   

8.
Soluble guanylate cyclase is an NO-sensing hemoprotein that serves as a NO receptor in NO-mediated signaling pathways. It has been believed that this enzyme displays no measurable affinity for O(2), thereby enabling the selective NO sensing in aerobic environments. Despite the physiological significance, the reactivity of the enzyme-heme for O(2) has not been examined in detail. In this paper we demonstrated that the high spin heme of the ferrous enzyme converted to a low spin oxyheme (Fe(2+)-O(2)) when frozen at 77 K in the presence of O(2). The ligation of O(2) was confirmed by EPR analyses using cobalt-substituted enzyme. The oxy form was produced also under solution conditions at -7 °C, with the extremely low affinity for O(2). The low O(2) affinity was not caused by a distal steric protein effect and by rupture of the Fe(2+)-proximal His bond as revealed by extended x-ray absorption fine structure. The midpoint potential of the enzyme-heme was +187 mV, which is the most positive among high spin protoheme-hemoproteins. This observation implies that the electron density of the ferrous heme iron is relatively low by comparison to those of other hemoproteins, presumably due to the weak Fe(2+)-proximal His bond. Based on our results, we propose that the weak Fe(2+)-proximal His bond is a key determinant for the low O(2) affinity of the heme moiety of soluble guanylate cyclase.  相似文献   

9.
The review highlights the molecular mechanism underlying the physiological effects of nitric oxide (NO), the role of signaling system: NO-soluble guanylate cyclase-cyclic 3′,5′-guanosine monophosphate (cGMP) in the realization of NO action. This review considers data on basic chemical characteristics of guanylate cyclase, such as the subunits structure, isoforms, modern concepts of the catalytic and regulatory centers of this enzyme. Realization of physiological effects of NO by guanylate cyclase depends on its heme prostetic group. NO-dependent activation of guanylate cyclase may be synergistically increased by a new NO-independent, allosteric activator of soluble guanylate cyclase-YC-1-(benzyl indasol derivative). Special attention is paid to the data on guanylate cyclase sites responcible for binding of the enzyme with YC-1 and the possible molecular mechanism underlying the synergistic increase of NO-dependent activation of soluble guanylate cyclase by YC-1. New compounds of endogenous nature capable to potentiate and synergistically increase the activation of guanylate cyclase by NO-donors have been found and investigated. The important physiological, pharmacotherapeutical and pathophysiological significance of this new fact is discussed.  相似文献   

10.
Soluble Guanylate Cyclase (sGC) is the receptor for the signalling agent nitric oxide (NO) and catalyses the production of the second messenger cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). The enzyme is an attractive drug target for small molecules that act in the cardiovascular and pulmonary systems, and has also shown to be a potential target in neurological disorders. We have discovered that 5-(indazol-3-yl)-1,2,4-oxadiazoles activate the enzyme in the absence of added NO and shown they bind to the catalytic domain of the enzyme after development of a surface plasmon resonance assay that allows the biophysical detection of intrinsic binding of ligands to the full length sGC and to a construct of the catalytic domain.  相似文献   

11.
Endothelial cells (ECs) from brain microvessels respond to exogenous nitric oxide (NO) donor molecules (N-ethoxycarbonyl-3-morpholinosydnonimine and sodium nitroprusside) with large (greater than 15-fold) increases in cyclic GMP (cGMP) levels. Comparable actions of sodium nitroprusside were observed in vascular smooth muscle cells and in neuroblastoma cells. Coculturing brain capillary ECs in the presence of N1E-115 neuroblastoma cells increased their cGMP levels fourfold. A further increase was observed in the presence of 50 nM neurotensin, although brain capillary ECs lack receptor sites for neurotensin. The neuroblastoma cell-dependent formation of cGMP was suppressed by 0.1 mM L-NG-monomethylarginine, indicating that NO, produced by N1E-115 cells in response to neurotensin, activated guanylate cyclase in brain capillary ECs. Similarly, culturing brain capillary ECs in the presence of aortic ECs increased their cGMP content in a manner that was amplified by bradykinin and that was inhibited by L-NG-monomethylarginine. Bradykinin had no action in pure cultures of brain capillary ECs. It is concluded that brain capillary ECs express high levels of guanylate cyclase activity that could be activated by exogenous NO donor molecules and by NO produced by neuroblastoma cells and by aortic ECs in response to specific agonists. Brain capillary ECs are thus potential target cells for brain-derived NO.  相似文献   

12.
Glyceryl trinitrate specifically required cysteine, whereas NaNO2 at concentrations less than 10 mM required one of several thiols or ascorbate, to activate soluble guanylate cyclase from bovine coronary artery. However, guanylate cyclase activation by nitroprusside or nitric oxide did not require the addition of thiols or ascorbate. Whereas various thiols enhanced activation by nitropruside, none of the thiols tested enhanced activation by nitric oxide. S-Nitrosocysteine, which is formed when cysteine reacts with either NO2? or nitric oxide, was a potent activator of guanylate cyclase. Similarly, micromolar concentrations of the S-nitroso derivatives of penicillamine, GSH and dithiothreitol, prepared by reacting the thiol with nitric oxide, activated guanylate cyclase. Guanylate cyclase activation by S-nitrosothiols resembled that by nitric oxide and nitroprusside in that activation was inhibited by methemoglobin, ferricyanide and methylene blue. Similarly, guanylate cyclase activation by glyceryl trinitrate plus cysteine, and by NaNO2 plus either a thiol or ascorbate, was inhibited by methemoglobin, ferricyanide and methylene blue. These data suggest that the activation of guanylate cyclase by each of the compounds tested may occur through a common mechanism, perhaps involving nitric oxide. Moreover, these findings suggest that S-nitrosothiols could act as intermediates in the activation of guanylate cyclase by glyceryl trinitrate, NaNO2 and possibly  相似文献   

13.
Soluble guanylate cyclase (GC) from bovine lung is activated 4-fold by carbon monoxide (CO) and 400-fold by nitric oxide (NO). Spectroscopic and kinetic data for ligation of CO and NO with GC are summarized and compared with similar data for myoglobin (Mb), hemoglobin (Hb), and heme model compounds. Kinetic, thermodynamic, and structural data form a basis on which to construct a model for the manner in which the two ligands affect protein structure near the heme for heme proteins in general and for GC in particular. The most significant datum is that although association rates of ligands with GC are similar to those with Mb and Hb, their dissociation rates are dramatically faster. This suggests a delicate balance between five- and six-coordinate heme iron in both NO and CO complexes. Based on these and other data, a model for GC activation is proposed: The first step is formation of a six-coordinate species concomitant with tertiary and quaternary structural changes in protein structure and about a 4-fold increase in enzyme activity. In the second step, applicable to NO, the bond from iron to the proximal histidine ruptures, leading to additional relaxation in the quaternary and tertiary structure and a further 100-fold increase in activity. This is the main event in activation, available to NO and possibly other activators or combinations of activators. It is proposed, finally, that the proximal base freed in step 2, or some other protein base suitably positioned as a result of structural changes following ligation, may provide a center for nucleophilic substitution catalyzing the reaction GTP --> cGMP. An example is provided for a similar reaction in a derivatized protoheme model compound. The reaction mechanism attempts to rationalize the relative enzymatic activities of GC, heme-deficient GC, GC-CO, and GC-NO on a common basis and makes predictions for new activators that may be discovered in the future.  相似文献   

14.
Carbon monoxide induces delayed neurological and neuropathological alterations, including memory loss and cognitive impairment. The bases for the delay remain unknown. Activation of soluble guanylate cyclase by nitric oxide modulates some forms of learning and memory. Carbon monoxide binds to soluble guanylate cyclase, activating it but interfering with its activation by nitric oxide. The aim of this work was to assess whether exposure of rats to carbon monoxide alters the activity of soluble guanylate cyclase or its modulation by nitric oxide in cerebellum or cerebral cortex. Rats exposed chronically or acutely to carbon monoxide were killed 24 h or 7 days later. Acute carbon monoxide exposure decreased cyclic guanosine monophosphate (cGMP) content and reduced activation of soluble guanylate cyclase by nitric oxide. Cortex was more sensitive than cerebellum to chronic exposure, which reduced activation of soluble guanylate cyclase by nitric oxide in cortex. In cerebellum, chronic exposure induced delayed impairment of soluble guanylate cyclase activation by nitric oxide. Acute exposure effects were also stronger at 7 days than at 24 h after exposure. This delayed impaired modulation of soluble guanylate cyclase by nitric oxide may contribute to delayed memory loss and cognitive impairment in humans exposed to carbon monoxide.  相似文献   

15.
1 , the resting Fe(II) state is mainly 6-coordinate and low-spin, and the CO adduct has vibrational frequencies characteristic of a histidine-heme-CO complex in a hydrophobic environment. In contrast, the protein sGC2 is 5-coordinate, high-spin in the resting state, and the CO adduct has perturbed vibrational frequencies indicative of a negatively polarizing residue in the binding pocket. The differences may result from the need to reconstitute sGC1 or different isolation procedures for sGC1 versus sGC2. However, both sGC1 and sGC2 are activated by the same mechanism, namely displacement of the proximal histidine ligand upon NO binding, and neither one is activated by CO. If CO is an activator in vivo, some additional molecular component is required. Received: 11 February 1999 / Accepted: 17 September 1999  相似文献   

16.
Intact crude synaptosomes from bovine cerebellum contain, in addition to an externally accessible (postsynaptic) adenylate cyclase, an enzyme with its catalytic center oriented towards the inside of the synaptosome (presynaptic adenylate cyclase). This is demonstrated by the unmasking of latent adenylate cyclase activity by Triton X-100. Furthermore, intact crude synaptosomes can synthesize cyclic AMP from adenine. This synthesis takes place inside the synaptosome as the postsynaptic adenylate cyclase is inactive in the Krebs-Ringer buffer. Presynaptic adenylate cyclase activity is not influenced by depolarization, as shown by [3H]adenine pulse-labeling, but is stimulated by (?)-norepinephrine and (?)-isoproterenol. (±)-Propranolol inhibits this stimulation whereas phentolamine has no effect, suggesting the presence of a β-adrenergic receptor-coupled presynaptic adenylate cyclase.  相似文献   

17.
Purified hepatic soluble guanylate cyclase (EC 4.6.1.2) had maximal specific activities in the unactivated state of 0.4 and 1 μmol cyclic GMP min?1 mg protein?1, when MgGTP and MnGTP, respectively, were used as substrates. The apparent Km for GTP was 85 or 10 μm in the presence of excess Mg2+ or Mn2+, respectively. Guanylate cyclase purified as described was deficient in heme but could be readily reconstituted with heme by reacting enzyme with hematin and excess dithiothreitol at 4 °C and pH 7.8. Unpurified guanylate cyclase was activated 20- to 84-fold by NO, nitroso compounds, NO-heme, and protoporphyrin IX. The purified enzyme was only slightly (2- to 3-fold) activated by NO and nitroso compounds but was markedly (50-fold) activated by NO-heme and protoporphyrin IX, achieving maximal specific activities of 10 μmol cyclic GMP min?1 mg protein?1. Enzyme activation by NO and nitroso compounds was restored by addition of hematin or by reconstitution of guanylate cyclase with heme. Excess hematin, however, inhibited enzyme activity. A partially purified heat-stable factor (activation-enhancing factor) was found to enhance (2- to 35-fold) enzyme activation without directly stimulating guanylate cyclase. In the presence of optimal concentrations of hematin, enzyme activation was still increased (2-fold) by the activation-enhancing factor but not by bovine serum albumin. Guanylate cyclase was markedly inhibited by SH reactive agents such as cystine, o-iodosobenzoic acid, periodate, and 5,5′-dithiobis (2-nitrobenzoic acid). In addition, CN? and FMN inhibited enzyme activation by NO-heme, but not by protoporphyrin IX, and did not affect basal enzymatic activity. Hepatic soluble guanylate cyclase appears to possess SH groups required for catalysis and to require heme and/or other unknown factors for the full expression of enzyme activation by NO and nitroso compounds.  相似文献   

18.
Quantitative nitric oxide production by rat, bovine and porcine macrophages   总被引:1,自引:0,他引:1  
The aim of this work was to compare in vitro nitric oxide (NO) production by rat, bovine and porcine macrophages. NO production was induced by lipopolysaccharide (LPS) or by phorbol 12-myristate 13-acetate (PMA) with ionomycin or recombinant interferon gamma (rIFN-γ) and was assessed by Griess reaction. NO synthase type II (NOS II) expression was quantified by immunocytochemistry, Western blot and real-time polymerase chain reaction (RT-PCR). There were differences in NO production by pulmonary alveolar macrophages (PAM) in all species tested. The largest amounts of NO were produced by rat PAM. Less NO was produced by bovine PAM. Moreover, PAM in rats and cows differed in their abilities to respond to various stimulators. Neither porcine PAM nor Kupffer cells produced NO. Stimulation of porcine PAM with alternative concentrations of LPS did not lead to inducing NO production. Stimulation of porcine PAM with rIFN-γ together with LPS led to a significant increase in the expression of NOS II mRNA, albeit without detectable NO production or NOS II expression on the protein level.  相似文献   

19.
Nitric oxide is emerging as an important modulator of many physiological processes including olfaction, yet the function of this gas in the processing of olfactory information remains poorly understood. In the antennal lobe of the moth, Manduca sexta, nitric oxide is produced in response to odor stimulation, and many interneurons express soluble guanylyl cyclase, a well-characterized nitric oxide target. We used intracellular recording and staining coupled with pharmacological manipulation of nitric oxide and soluble guanylyl cyclase to test the hypothesis that nitric oxide modulates odor responsiveness in olfactory interneurons through soluble guanylyl cyclase-dependent pathways. Nitric oxide synthase inhibition resulted in pronounced effects on the resting level of firing and the responses to odor stimulation in most interneurons. Effects ranged from bursting to strong attenuation of activity and were often accompanied by membrane depolarization coupled with a change in input resistance. Blocking nitric oxide activation of soluble guanylyl cyclase signaling mimicked the effects of nitric oxide synthase inhibitors in a subset of olfactory neurons, while other cells were differentially affected by this treatment. Together, these results suggest that nitric oxide is required for proper olfactory function, and likely acts through soluble guanylyl cyclase-dependent and -independent mechanisms in different subsets of neurons.  相似文献   

20.
Nitric oxide (NO) is an important part of the host defense mechanism; however, it displays both pro- and anti-inflammatory properties depending on its location and concentration. Importantly, excessive or inappropriate NO production can cause tissue damage. Systemic and local administration of NO synthase (NOS) inhibitors ameliorates and may exacerbate the inflammatory response, respectively. Here, we used a carrageenan-induced pleurisy model of acute inflammation in rats to confirm the location-dependent effects of NO and investigate the underlying mechanisms. As expected, localized suppression of NO production exacerbated inflammation, as evidenced by increased pleural exudate volumes and leukocyte counts and enhanced activity of enzymes related to oxidative stress. In contrast, local NO supplementation reduced leukocyte infiltration, vascular permeability, and the activity of oxidative stress-related enzymes. Interestingly, inhibition of heme oxygenase-1 (HO-1) reversed the anti-inflammatory effects of localized NO production, while the addition of hemin (HO-1 substrate) or carbon monoxide (CO; HO-1 metabolite) decreased leukocyte migration and exudation. Together, these findings confirm a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway. Thus, NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号