首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early onset increases in oxidative stress and tau pathology are present in the brain of senescence-accelerated mice prone (SAMP8). Astrocytes play an essential role, both in determining the brain's susceptibility to oxidative damage and in protecting neurons. In this study, we examine changes in tau phosphorylation, oxidative stress and glutamate uptake in primary cultures of cortical astrocytes from neonatal SAMP8 mice and senescence-accelerated-resistant mice (SAMR1). We demonstrated an enhancement of abnormally phosphorylated tau in Ser(199) and Ser(396) in SAMP8 astrocytes compared with that of SAMR1 control mice. Gsk3beta and Cdk5 kinase activity, which regulate tau phosphorylation, was also increased in SAMP8 astrocytes. Inhibition of Gsk3beta by lithium or Cdk5 by roscovitine reduced tau phosphorylation at Ser(396). Moreover, we detected an increase in radical superoxide generation, which may be responsible for the corresponding increase in lipoperoxidation and protein oxidation. We also observed a reduced mitochondrial membrane potential in SAMP8 mouse astrocytes. Glutamate uptake in astrocytes is a critical neuroprotective mechanism. SAMP8 astrocytes showed a decreased glutamate uptake compared with those of SAMR1 controls. Interestingly, survival of SAMP8 or SAMR1 neurons cocultured with SAMP8 astrocytes was significantly reduced. Our results indicate that alterations in astrocyte cultures from SAMP8 mice are similar to those detected in whole brains of SAMP8 mice at 1-5 months. Moreover, our findings suggest that this in vitro preparation is suitable for studying the molecular and cellular processes underlying early aging in this murine model. In addition, our study supports the contention that astrocytes play a key role in neurodegeneration during the aging process.  相似文献   

2.
Mounting evidence supports a link between diabetes, cognitive dysfunction, and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age‐associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence‐accelerated prone 8 (SAMP8) and senescence‐resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in the development of cognitive deficits in SAMR1 mice similar to those seen in age‐matched, nondiabetic SAMP8 mice. No further cognitive deficits were observed when the SAMP8 mice were made diabetic. T1D dramatically increased Aβ and glial fibrillary acidic protein immunoreactivity in the hippocampus of SAMP8 mice and to a lesser extent in age‐matched SAMR1 mice. Further analysis revealed aggregated Aβ within astrocyte processes surrounding vessels. Western blot analyses from T1D SAMP8 mice showed elevated amyloid precursor protein processing and protein glycation along with increased inflammation. T1D elevated tau phosphorylation in the SAMR1 mice but did not further increase it in the SAMP8 mice where it was already significantly higher. These data suggest that aberrant glucose metabolism potentiates the aging phenotype in old mice and contributes to early stage central nervous system pathology in younger animals.  相似文献   

3.
Phosphorylation of the microtubule-associated protein tau is regulated by the balanced interplay of kinases and phosphatases. Disturbance of this balance causes hyperphosphorylation of tau and neurofibrillary tangle formation in Alzheimer’s disease brain. Here, we crossed Dom5 mice that express a substrate-specific dominant negative mutant form, L309A Cα, of protein phosphatase 2A (PP2A) with neurofibrillary-tangle-forming P301L mutant tau transgenic pR5 mice. This exacerbated the tau pathology of pR5 mice significantly. Double-transgenic Dom5/pR5 mice showed 7-fold increased numbers of hippocampal neurons that specifically phosphorylated the pathological S422 epitope of tau. They showed 8-fold increased numbers of tangles compared to pR5 mice, in agreement with our previous finding that tangle formation is correlated with and preceded by phosphorylation of tau at the S422 epitope. This suggests that, in addition to kinases, PP2A and its regulatory subunits may be a therapeutic target for Alzheimer’s disease.  相似文献   

4.
Diabetes mellitus (DM) is characterized by hyperglycemia caused by a lack of insulin, insulin resistance, or both. There is increasing evidence that insulin also plays a role in Alzheimer''s disease (AD) as it is involved in the metabolism of β-amyloid (Aβ) and tau, two proteins that form Aβ plaques and neurofibrillary tangles (NFTs), respectively, the hallmark lesions in AD. Here, we examined the effects of experimental DM on a pre-existing tau pathology in the pR5 transgenic mouse strain that is characterized by NFTs. pR5 mice express P301L mutant human tau that is associated with dementia. Experimental DM was induced by administration of streptozotocin (STZ), which causes insulin deficiency. We determined phosphorylation of tau, using immunohistochemistry and Western blotting. Solubility of tau was determined upon extraction with sarkosyl and formic acid, and Gallyas silver staining was employed to reveal NFTs. Insulin depletion by STZ administration in six months-old non-transgenic mice causes increased tau phosphorylation, without its deposition or NFT formation. In contrast, in pR5 mice this results in massive deposition of hyperphosphorylated, insoluble tau. Furthermore, they develop a pronounced tau-histopathology, including NFTs at this early age, while the pathology in sham-treated pR5 mice is moderate. Whereas experimental DM did not result in deposition of hyperphosphorylated tau in non-transgenic mice, a predisposition to develop a tau pathology in young pR5 mice was both sufficient and necessary to exacerbate tau deposition and NFT formation. Hence, DM can accelerate onset and increase severity of disease in individuals with a predisposition to developing tau pathology.  相似文献   

5.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

6.
Immunization is increasingly recognized as a suitable therapeutic avenue for the treatment of neurological diseases such as Alzheimer's disease and other tauopathies. Tau is a key molecular player in these conditions and therefore represents an attractive target for passive immunization approaches. We performed such an approach in two independent tau transgenic mouse models of tauopathy, K369I tau transgenic K3 and P301L tau transgenic pR5 mice. The antibodies we used were either specific for full‐length tau or tau phosphorylated at serine 404 (pS404), a residue that forms part of the paired helical filament (PHF)‐1 phosphoepitope that characterizes tau neurofibrillary tangles in tauopathies. Although both pS404 antibodies had a similar affinity, they differed in isotype, and only passive immunization with the IgG2a/κ pS404‐specific antibody resulted in a lower tangle burden and reduced phosphorylation of tau at the PHF1 epitope in K3 mice. In pR5 mice, the same antibody led to a reduced phosphorylation of the pS422 and PHF1 epitopes of tau. In addition, histological sections of the hippocampal dentate gyrus of the immunized pR5 mice displayed reduced pS422 staining intensities. These results show that passive immunization targeting tau can modulate aspects of tau pathology in tau transgenic mouse models, in an antibody isotype‐specific manner.

  相似文献   


7.
8.
The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.  相似文献   

9.
Bi M  Ittner A  Ke YD  Götz J  Ittner LM 《PloS one》2011,6(12):e26860
In Alzheimer's disease (AD) brains, the microtubule-associated protein tau and amyloid-β (Aβ) deposit as intracellular neurofibrillary tangles (NFTs) and extracellular plaques, respectively. Tau deposits are furthermore found in a significant number of frontotemporal dementia cases. These diseases are characterized by progressive neurodegeneration, the loss of intellectual capabilities and behavioral changes. Unfortunately, the currently available therapies are limited to symptomatic relief. While active immunization against Aβ has shown efficacy in both various AD mouse models and patients with AD, immunization against pathogenic tau has only recently been shown to prevent pathology in young tau transgenic mice. However, if translated to humans, diagnosis and treatment would be routinely done when symptoms are overt, meaning that the histopathological changes have already progressed. Therefore, we used active immunization to target pathogenic tau in 4, 8, and 18 months-old P301L tau transgenic pR5 mice that have an onset of NFT pathology at 6 months of age. In all age groups, NFT pathology was significantly reduced in treated compared to control pR5 mice. Similarly, phosphorylation of tau at pathological sites was reduced. In addition, increased astrocytosis was found in the oldest treated group. Taken together, our data suggests that tau-targeted immunization slows the progression of NFT pathology in mice, with practical implications for human patients.  相似文献   

10.
The 5‐lipoxygenase (5LO) is a source of inflammatory leukotrienes and is upregulated in Alzheimer's disease and related tauopathies. However, whether it directly modulates tau phosphorylation and the development of its typical neuropathology in the absence of Aβ or is a secondary event during the course of the disease pathogenesis remains to be fully elucidated. The goal of this study was to evaluate the effect that pharmacologic blockade of this inflammatory pathway has on the phenotype of a transgenic mouse model of tauopathy, the P301S mice. Starting at 3 months of age, P301S mice were randomized to receive zileuton, a specific 5LO blocker, for 7 months; then, its effect on their behavioral deficits and neuropathology was assessed. Inhibition of leukotrienes formation was associated with a reduction in tau phosphorylation and an amelioration of memory and learning as well as synaptic integrity, which were secondary to a downregulation of the cdk5 kinase pathway. Our results demonstrate that the 5LO enzyme is a key player in modulating tau phosphorylation and pathology and that blockade of its enzymatic activity represents a desirable disease‐modifying therapeutic approach for tauopathy.  相似文献   

11.
Kinase activities increase during the development of tauopathy in htau mice   总被引:1,自引:0,他引:1  
Hyperphosphorylated tau aggregates are the core constituent of neurofibrillary tangles. Recent research has shown a division between the presence of tangles, neurodegeneration and subsequent memory impairment, raising the possibility that an earlier pre-aggregated form of tau may be toxic. To gain further insight into the relationship between abnormal forms of tau, we have analyzed pathological changes in tau during tauopathy development in tangle-forming transgenic mice. In addition, we have quantified changes in the endogenous levels of a panel of protein kinases. We show progressive increases in aggregated tau and disease-specific conformational change, with hyperphosphorylation occurring in an age-dependent manner at specific sites. There were significant correlations between specific phosphorylation changes and amounts of aggregated tau and and abnormal tau conformations. Of the protein kinases tested, we found increases in phosphorylated (activated) p38 and the cyclin-dependent kinase-5 neuronal activators, p35 and p25, with aging, in the htau line, but not in non-tangle-forming control mice. Changes in tau kinases correlated with the amount of tau present in abnormal conformations and with insoluble tau in htau mice. These data suggest that cdk5 and p38 may be associated with pathological changes in wild-type human tau during the progressive development of tauopathy.  相似文献   

12.
Age-related changes in systolic blood pressure were assessed, using the senescence-accelerated mouse (SAM) model for aging research with strains SAMR1, SAMP1, and SAMP8. Each of the strains manifested a characteristic change in blood pressure with age. The SAMR1 strain, with normal aging, did not have chronologic changes from 2 to 27 months of age. The SAMP1 strain, with accelerated senescence, had a significant increase in blood pressure with age, and some (8 of 39) mice manifested hypertensive vascular disease characterized by high blood pressure, cardiac hypertrophy, and arteriolar fibrinoid necrosis at 11 to 14 months of age. The gradual increase in blood pressure after 8 to 10 months was considered to be preceded by progressive renal changes, from glomerulonephritis to contraction of the kidney, suggesting that the high blood pressure in the SAMP1 strain was of renal origin. Blood pressure in the SAMP8 strain, with age-related deficits in learning and memory, gradually decreased after 5 to 7 months of age, and was suggested to be due to the astrogliotic changes in response to spongiform degeneration in the medulla oblongata at 11 to 14 and 15 to 18 months of age.  相似文献   

13.
Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1‐NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age‐related changes in B1‐NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence‐accelerated‐prone mice (SAMP8) relative to senescence‐accelerated‐resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1‐NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1‐NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1‐NSCs. Moreover, SAMP8 neurospheres lack self‐renewal and enter p53‐dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice.  相似文献   

14.
Protein tau-3R/4R isoform ratio and phosphorylation regulates binding to microtubules and, when disturbed by aging or mutations, results in diverse tauopathies and in neurodegeneration. The underlying mechanisms were studied here in three transgenic mouse strains with identical genetic background, all expressing the tau-4R/2N isoform driven specifically in neurons by the thy1 gene promoter. Two strains, expressing human tau-4R/2N or mutant tau-4R/2N-P301L at similar, moderate levels, developed very different phenotypes. Tau-4R/2N mice became motor-impaired already around age 6-8 weeks, accompanied by axonopathy (dilatations, spheroids), but no tau aggregates, and surviving normally. In contrast, tau-P301L mice developed neurofibrillary tangles from age 6 months, without axonal dilatations and, despite only minor motor problems, all succumbing before the age of 13 months. The third strain, obtained by tau knock-out/knock-in (tau-KOKI), expressed normal levels of wild-type human tau-4R/2N replacing all mouse tau isoforms. Tau-KOKI mice survived normally with minor motor problems late in life and without any obvious pathology. Biochemically, a fraction of neuronal tau in aging tau-P301L mice was hyperphosphorylated concomitant with conformational changes and aggregation, but overall, tau-4R/2N was actually more phosphorylated than tau-P301L. Significantly, tau with changed conformation and with hyperphosphorylation colocalized in the same neurons in aging tau-P301L mice. Taken together, we conclude that excessive binding of tau-4R/2N as opposed to reduced binding of tau-P301L to microtubules is responsible for the development of axonopathy and tauopathy, respectively, in tau-4R/2N and tau-P301L mice and that the conformational change of tau-P301L is a major determinant in triggering the tauopathy.  相似文献   

15.
Progressive accumulation of highly phosphorylated tau protein isoforms is the main feature of a group of neurodegenerative diseases collectively called tauopathies. Data from human and animal models of these diseases have shown that neuroinflammation often accompanies their pathogenesis. The 5‐lipoxygenase (5LO) is an enzyme widely expressed in the brain and a source of potent pro‐inflammatory mediators, while its pharmacological inhibition modulates the phenotype of a tau transgenic mouse model, the htau mice. By employing an adeno‐associated viral vector system to over‐express 5LO in the brain, we examined its contribution to the behavioral deficits and neuropathology in a different transgenic mouse model of tauopathy, the P301S mouse line. Compared with controls, 5LO‐targeted gene brain over‐expression in these mice resulted in a worsening of behavioral and motor deficits. Over‐expression of 5LO resulted in microglia and astrocyte activation and significant synaptic pathology, which was associated with a significant elevation of tau phosphorylation at specific epitopes, tau insoluble fraction, and activation of the cdk5 kinase. In vitro studies confirmed that 5LO directly modulates tau phosphorylation at the same epitopes via the cdk5 kinase pathway. These data demonstrate that 5LO plays a direct role in tau phosphorylation and is an active player in the development of the entire tau phenotype. They provide further support to the hypothesis that 5LO is a viable therapeutic target for the treatment and/or prevention of human tauopathy.  相似文献   

16.
Tau aggregation into ordered assemblies causes neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles and that Ms encodes strains, that is, unique, self-replicating, biologically active assemblies. It is unknown if disease begins with Ms formation followed by fibril assembly or if Ms derives from fibrils and is therefore an epiphenomenon. Here, we studied a tauopathy mouse model (PS19) that expresses full-length mutant human (1N4R) tau (P301S). Insoluble tau seeding activity appeared at 2 months of age and insoluble tau protein assemblies by immunoblot at 3 months. Tau monomer from mice aged 1 to 6 weeks, purified using size-exclusion chromatography, contained soluble seeding activity at 4 weeks, before insoluble material or larger assemblies were observed, with assemblies ranging from n = 1 to 3 tau units. By 5 to 6 weeks, large soluble assemblies had formed. This indicated that the first detectable pathological forms of tau were in fact Ms. We next examined posttranslational modifications of tau monomer from 1 to 6 weeks. We detected no phosphorylation unique to Ms in PS19 or human Alzheimer’s disease brains. We conclude that tauopathy begins with formation of the Ms monomer, whose activity is phosphorylation independent. Ms then self assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for the origins of tauopathy in humans.  相似文献   

17.
The neuropathological hallmark shared between Alzheimer's disease (AD) and familial frontotemporal dementia (FTDP-17) are neurofibrillary tangles (NFT) which are composed of filamentous aggregates of the microtubule-associated protein tau. Their formation has been reproduced in transgenic mice, which express the FTDP-17-associated mutation P301L of tau. In these mice, tau aggregates are found in many brain areas including the hippocampus and the amygdala, both of which are characterized by NFT formation in AD. Previous studies using an amygdala-specific test battery revealed an increase in exploratory behavior and an accelerated extinction of conditioned taste aversion in these mice. Here, we assessed P301L mice in behavioral tests known to depend on an intact hippocampus. Morris water maze and Y-maze revealed intact spatial working memory but impairment in spatial reference memory at 6 and 11 months of age. In addition, a modest disinhibition of exploratory behavior at 6 months of age was confirmed in the open field and the elevated O-maze and was more pronounced during aging.  相似文献   

18.
In neurodegenerative disorders, abnormally hyperphosphorylated and aggregated tau accumulates intracellularly, a mechanism which is thought to induce neuronal cell death. Methylene blue, a type of phenothiazine, has been reported to inhibit tau aggregation in vitro. However, the effect of methylene blue in vivo has remained unknown. Therefore, we examined whether methylene blue suppresses abnormal tau accumulation using P301L tau transgenic mice. At 8 to 11 months of age, these mice were orally administered methylene blue for 5 months. Subsequent results of Western blotting analysis revealed that this agent reduced detergent-insoluble phospho-tau. Methylene blue may have potential as a drug candidate for the treatment of tauopathy.  相似文献   

19.
20.
The prevalence of liver diseases emphasizes the need of animal models to research on the mechanism of disease pathogenesis. Furthermore, most of the liver pathologies have the oxidative stress as an important component. The senescence-accelerated mouse strain SAMP8 was proposed as a valuable animal model for the study of liver diseases. To gain a better understanding of the mechanisms underlying degenerative processes in SAMP8 mice livers, we studied the oxidative-induced damage in 5-month-old SAMP8 mice and SAMR1, senescence-accelerated-resistant mice. We found profound differences in the antioxidant response to aging between sexes, with males displaying lowest levels of main antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) in SAMP8; whereas females had no difference in their activities, except for GR, when compared with their SAMR1 controls. The results obtained show the binomial SOD/CAT as an important factor for counteracting reactive oxygen species-dependent damage. There were not pathological differences at the morphological level between both strains, although the decay in protection against free radicals had an immediate response by increasing lipid and protein oxidative damage in SAMP8 mice liver. At 5 months, both male and female SAMP8 mice confront the oxidative stress challenge to different extents. Indeed, proteins seem to be the most vulnerable biomolecule in SAMP8 male mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号