首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary restriction (DR) robustly delays the aging process in all animals tested so far. DR slows aging by negatively regulating the target of rapamycin (TOR) and S6 kinase (S6K) signaling pathway and thus inhibiting translation. Translation inhibition in C. elegans is known to activate the innate immune signal ZIP‐2. Here, we show that ZIP‐2 is activated in response to DR and in feeding‐defective eat‐2 mutants. Importantly, ZIP‐2 contributes to the improvements in longevity and healthy aging, including mitochondrial integrity and physical ability, mediated by DR in C. elegans. We further show that ZIP‐2 is activated upon inhibition of TOR/S6K signaling. However, DR‐mediated activation of ZIP‐2 does not require the TOR/S6K effector PHA‐4/FOXA. Furthermore, zip‐2 was not activated or required for longevity in daf‐2 mutants, which mimic a low nutrition status. Thus, DR appears to activate ZIP‐2 independently of PHA‐4/FOXA and DAF‐2. The link between DR, aging, and immune activation provides practical insight into the DR‐induced benefits on health span and longevity.  相似文献   

2.
NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 polyunsaturated fatty acid dihommogamma‐linolenic acid (DGLA). Two other proteins, NRF‐5 and NRF‐6, a homolog of a mammalian secreted lipid binding protein and a NDG‐4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG‐4 protein results in increased organismal stress resistance and lifespan. When NDG‐4 function and insulin/IGF‐1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg‐4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR‐80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR‐80 is also required for longevity of ndg‐4 mutants. Moreover, we find that nrf‐5 and nrf‐6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.  相似文献   

3.
4.
Caenorhabditis elegans is an excellent model for high‐throughput experimental approaches but lacks an automated means to pinpoint time of death during survival assays over a short time frame, that is, easy to implement, highly scalable, robust, and versatile. Here, we describe an automated, label‐free, high‐throughput method using death‐associated fluorescence to monitor nematode population survival (dubbed LFASS for label‐free automated survival scoring), which we apply to severe stress and infection resistance assays. We demonstrate its use to define correlations between age, longevity, and severe stress resistance, and its applicability to parasitic nematodes. The use of LFASS to assess the effects of aging on susceptibility to severe stress revealed an unexpected increase in stress resistance with advancing age, which was largely autophagy‐dependent. Correlation analysis further revealed that while severe thermal stress resistance positively correlates with lifespan, severe oxidative stress resistance does not. This supports the view that temperature‐sensitive protein‐handling processes more than redox homeostasis underpin aging in C. elegans. That the ages of peak resistance to infection, severe oxidative stress, heat shock, and milder stressors differ markedly suggests that stress resistance and health span do not show a simple correspondence in C. elegans.  相似文献   

5.
Reactive oxygen species (ROS) are potentially toxic, but they are also signaling molecules that modulate aging. Recent observations that ROS can promote longevity have to be reconciled with the numerous claims about the benefits of antioxidants on lifespan. Here, three antioxidants [N‐acetylcysteine (NAC), vitamin C, and resveratrol (RSV)] were tested on Caenorhabditis elegans mutants that alter drug uptake, mitochondrial function, and ROS metabolism. We observed that like pro‐oxidants, antioxidants can both lengthen and shorten lifespan, dependent on concentration, genotypes, and conditions. The effects of antioxidants thus reveal an inverted U‐shaped dose–response relationship between ROS levels and lifespan. In addition, we observed that RSV can act additively to both NAC and paraquat, to dramatically increase lifespan. This suggests that the effect of compounds that modulate ROS levels can be additive when their loci of action or mechanisms of action are sufficiently distinct.  相似文献   

6.
7.
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte‐specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C‐terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf‐1 and characterized it in the context of the sRNA pathways of C. elegans. We report that GTSF‐1 is not required for Piwi‐mediated gene silencing. Instead, gtsf‐1 mutants show a striking depletion of 26G‐RNAs, a class of endogenous sRNAs, fully phenocopying rrf‐3 mutants. We show, both in vivo and in vitro, that GTSF‐1 interacts with RRF‐3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF‐1 is required for the assembly of a larger RRF‐3 and DCR‐1‐containing complex (ERIC), thereby allowing for 26G‐RNA generation. We propose that GTSF‐1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA‐mediated silencing activities.  相似文献   

8.
Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) approach for accurate, sensitive, and linear in vivo quantification of endogenous oxidative damage in the nematode Caenorhabditis elegans, based on F3‐isoprostanes. F3‐isoprostanes are prostaglandin‐like markers of oxidative damage derived from lipid peroxidation by Reactive Oxygen Species (ROS). Oxidative damage was quantified in whole animals and in multiple cellular compartments, including mitochondria and peroxisomes. Mutants of the mitochondrial electron transport proteins mev‐1 and clk‐1 showed increased oxidative damage levels. Furthermore, analysis of Superoxide Dismutase (sod) and Catalase (ctl) mutants uncovered that oxidative damage levels cannot be inferred from the phenotype of resistance to pro‐oxidants alone and revealed high oxidative damage in a small group of chemosensory neurons. Longitudinal analysis of aging nematodes revealed that oxidative damage increased specifically with postreproductive age. Remarkably, aging of the stress‐resistant and long‐lived daf‐2 insulin/IGF‐1 receptor mutant involved distinct daf‐16‐dependent phases of oxidative damage including a temporal increase at young adulthood. These observations are consistent with a hormetic response to ROS.  相似文献   

9.
10.
11.
The identification and characterization of age‐related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here, we document a novel, age‐related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching—intra‐uterine hatching of progeny that causes maternal death—displayed an age‐related increase in frequency and affected ~70% of mated, wild‐type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age‐related degeneration of the egg‐laying system rather than use‐dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age‐related degeneration of the egg‐laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age‐related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg laying degenerate in an age‐related manner. By characterizing a new, age‐related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age‐related reproductive complications that may be relevant to the birthing process in other animals such as humans.  相似文献   

12.
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed ‘WormFarm’, an integrated microfluidic device for culturing nematodes. Cohorts of 30–50 animals are maintained throughout their lifespan in each of eight separate chambers on a single WormFarm polydimethylsiloxane chip. Design features allow for automated removal of progeny and efficient control of environmental conditions. In addition, we have developed computational algorithms for automated analysis of video footage to quantitate survival and other phenotypes, such as body size and motility. As proof‐of‐principle, we show here that WormFarm successfully recapitulates survival data obtained from a standard plate‐based assay for both RNAi‐mediated and dietary‐induced changes in lifespan. Further, using a fluorescent reporter in conjunction with WormFarm, we report an age‐associated decrease in fluorescent intensity of GFP in transgenic worms expressing GFP tagged with a mitochondrial import signal under the control of the myo‐3 promoter. This marker may therefore serve as a useful biomarker of biological age and aging rate.  相似文献   

13.
14.
The G protein‐coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR‐2, expressed in AWC and ASI amphid sensory neurons. STR‐2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR‐2 regulates expression of delta‐9 desaturases, fat‐5, fat‐6 and fat‐7, and of diacylglycerol acyltransferase dgat‐2. Rescue of the STR‐2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat‐5, dgat‐2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild‐type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR‐2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.  相似文献   

15.
16.
17.
RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5‐trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues. Conversely up‐regulating IP3 signalling decreases sensitivity. Tissue‐specific rescue experiments suggest IP3 functions in the intestine. We also exploit IP3 signalling mutants to further enhance the sensitivity of RNAi hypersensitive strains. These results demonstrate that conserved cell signalling pathways can modify RNAi responses, implying that RNAi responses may be influenced by an animal's physiology or environment.  相似文献   

18.
19.
Research in aging biology has identified several pathways that are molecularly conserved across species that extend lifespan when mutated. The insulin/insulin‐like signaling (IIS) pathway is one of the most widely studied of these. It has been assumed that extending lifespan also extends healthspan (the period of life with minimal functional loss). However, data supporting this assumption conflict and recent evidence suggest that life extension may, in and of itself, extend the frail period. In this study, we use Caenorhabditis elegans to further probe the link between lifespan and healthspan. Using movement decline as a measure of health, we assessed healthspan across the entire lifespan in nine IIS pathway mutants. In one series of experiments, we studied healthspan in mass cultures, and in another series, we studied individuals longitudinally. We found that long‐lived mutants display prolonged mid‐life movement and do not prolong the frailty period. Lastly, we observed that early‐adulthood movement was not predictive of late‐life movement or survival, within identical phenotypes. Overall, these observations show that extending lifespan does not prolong the period of frailty. Both genotype and a stochastic component modulate aging, and movement late in life is more variable than early‐life movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号