首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
dTOR (target of rapamycin) and dFoxo respond to changes in the nutritional environment to induce a broad range of responses in multiple tissue types. Both dTOR and dFoxo have been demonstrated to control the rate of age-related decline in cardiac function. Here, we show that the Eif4e-binding protein (d4eBP) is sufficient to protect long-term cardiac function against age-related decline and that up-regulation of dEif4e is sufficient to recapitulate the effects of high dTOR or insulin signaling. We also provide evidence that d4eBP acts tissue-autonomously and downstream of dTOR and dFoxo in the myocardium, where it enhances cardiac stress resistance and maintains normal heart rate and myogenic rhythm. Another effector of dTOR and insulin signaling, dS6K , may influence cardiac aging nonautonomously through its activity in the insulin-producing cells, possibly by regulating dilp2 expression. Thus, elevating d4eBP activity in cardiac tissue represents an effective organ-specific means for slowing or reversing cardiac functional changes brought about by normal aging.  相似文献   

2.
The Drosophila dorsal vessel consists of two cell types, contractile cardiomyoblasts that form a linear tube-like structure, and the loosely associated pericardial cells. All heart cells originate during embryogenesis from the early dorsal mesoderm under the influence of external and internal signals. Recently, it was shown that a subset of heart cells arise throughout asymmetric cell division, dependent on the function of Notch, Sanpodo, and Numb. Here, we show that Inscuteable, a multiadapter protein required for asymmetric cell division, participates in the formation of specific heart cells to distinguish between a myogenic (cardiomyoblast) and a nonmyogenic (pericardial cell) fate.  相似文献   

3.
4.
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.  相似文献   

5.
Activations of MMP-2 and membrane type 1-matrix metalloproteinase (MT1-MMP) have been correlated with cell migration, a key cellular event in the wound healing and tissue remodeling. We have previously demonstrated furin-dependent MMP-2 and MT1-MMP activations induced by type I collagen in cardiac fibroblasts. To understand mechanistic aspects of the regulation of MMP-2 and MT1-MMP activations by potential non-matrix factor(s) in cardiac fibroblasts, in the present study, we examined the effects of various agents including concanavalin A (ConA), a proteolytic phenotype-producing agent. We showed that treatment of cells with ConA activated pro-MMP-2, and that this activation concurred with elevated levels of cellular MT1-MMP and TIMP-2. The presence of active MT1-MMP and 43 and 36 kDa processed forms of MT1-MMP in a fraction of intracellular proteins prepared from ConA-treated cells suggests the possible internalization of differential forms of MT1-MMP. The appearance of 36 kDa processed form of MT1-MMP in conditioned media prepared from ConA-treated cells indicates the possible extracellular release of the further processed MT1-MMP fragment. Inhibition of furin in ConA-treated cells attenuated pro-MT1-MMP processing and the cellular TIMP-2 level, plus it reduced cell-released active MMP-2 in a time-dependent manner. These results suggest the involvement of furin in the ConA-induced activations of MT1-MMP and MMP-2. Furthermore, the existence of furin inhibitor-insensitive pro- and active MMP-2 species associated with ConA-treated cells implies that a mechanism independent of furin may perhaps account for the binding of the MMP-2 species to the cells. Supplementary material for this article can be found at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/94/suppmat_guo.tif.  相似文献   

6.
Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single‐cell basis. The method combines a senescence‐associated beta‐galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high‐content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo.  相似文献   

7.
Dietary restriction extends lifespan substantially in numerous species including Drosophila. However, it is unclear whether dietary restriction in flies impacts age-related functional declines in conjunction with its effects on lifespan. Here, we address this issue by assessing the effect of dietary restriction on lifespan and behavioral senescence in two wild-type strains, in our standard white laboratory stock, and in short-lived flies with reduced expression of superoxide dismutase 2. As expected, dietary restriction extended lifespan in all of these strains. The effect of dietary restriction on lifespan varied with genetic background, ranging from 40 to 90% extension of median lifespan in the seven strains tested. Interestingly, despite its robust positive effects on lifespan, dietary restriction had no substantive effects on senescence of behavior in any of the strains in our studies. Our results suggest that dietary restriction does not have a global impact on aging in Drosophila and support the hypothesis that lifespan and behavioral senescence are not driven by identical mechanisms.  相似文献   

8.
9.
10.
11.
Gap junctions (GJ) are important determinants of cardiac conduction and the evidence has recently emerged that altered distribution of these junctions and changes in the expression of their constituent connexins (Cx) may lead to abnormal coupling between cardiomyocytes and likely contribute to arrhythmogenesis. However, it is largely unknown whether changes in the expression and distribution of the major cardiac GJ protein, Cx43, is a general feature of diverse chronic myocardial diseases or is confined to some particular pathophysiological settings. In the present study, we therefore set out to investigate qualitatively and quantitatively the distribution and expression of Cx43 in normal human myocardium and in patients with dilated (DCM), ischemic (ICM), and inflammatory cardiomyopathies (MYO). Left ventricular tissue samples were obtained at the time of cardiac transplantation and investigated with immunoconfocal and electron microscopy. As compared with the control group, Cx43 labeling in myocytes bordering regions of healed myocardial infarction (ICM), small areas of replacement fibrosis (DCM) and myocardial inflammation (MYO) was found to be highly disrupted instead of being confined to the intercalated discs. In all groups, myocardium distant from these regions showed an apparently normal Cx43 distribution at the intercalated discs. Quantitative immunoconfocal analyis of Cx43 in the latter myocytes revealed that the Cx43 area per myocyte area or per myocyte volume is significantly decreased by respectively 30 and 55% in DCM, 23 and 48% in ICM, and by 21 and 40% in MYO as compared with normal human myocardium. In conclusion, focal disorganization of GJ distribution and down-regulation of Cx43 are typical features of myocardial remodeling that may play an important role in the development of an arrhythmogenic substrate in human cardiomyopathies.  相似文献   

12.
Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3′UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.  相似文献   

13.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   

14.
15.
Dynamics of high-frequency components of heart periodogram whose main part is respiratory arrhythmia (RA) as well as consequences of vagotomy, block of M-cholinoreceptors by atropine and of β-adrenoreceptors by propranolol was studied in Wistar white rats in a large age diapason from 2–4 days to adults. It was established that results of the actions in immature rats did not essentially differ from those observed in adult rats and described in animals of other species and in human. In rats of young age, predominant in genesis of RA is peripheral mechanism. Vagotomy produces an elevation of the RA amplitude due to a sharp increase of the inspiration time as well as to deafferentation. Sympathetic nervous system produces restricting action on RA. This role is preserved in animals of all age groups. Participation of parasympathetic innervation in the RA genesis is revealed from the third week and continues increasing to the mature age. However, in adult rats, the peripheral mechanism of the RA formation is preserved, as disturbance of parasympathetic innervation leads not to the disappearance of RA, but only to a decrease of its amplitude.  相似文献   

16.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   

17.
18.
Differentiation of foetal cardiomyocytes is accompanied by sequential actin isoform expression, i.e. down-regulation of the 'embryonic' alpha smooth muscle actin, followed by an up-regulation of alpha skeletal actin (αSKA) and a final predominant expression of alpha cardiac actin (αCA). Our objective was to detect whether re-expression of αSKA occurred during cardiomyocyte dedifferentiation, a phenomenon that has been observed in different pathologies characterized by myocardial dysfunction. Immunohistochemistry of αCA, αSKA and cardiotin was performed on left ventricle biopsies from human patients after coronary bypass surgery. Furthermore, actin isoform expression was investigated in left ventricle samples of rabbit hearts suffering from pressure- and volume-overload and in adult rabbit ventricular cardiomyocytes during dedifferentiation in vitro . Atrial goat samples up to 16 weeks of sustained atrial fibrillation (AF) were studied ultrastructurally and were immunostained for αCA and αSKA. Up-regulation of αSKA was observed in human ventricular cardiomyocytes showing down-regulation of αCA and cardiotin. A patchy re-expression pattern of αSKA was observed in rabbit left ventricular tissue subjected to pressure- and volume-overload. Dedifferentiating cardiomyocytes in vitro revealed a degradation of the contractile apparatus and local re-expression of αSKA. Comparable αSKA staining patterns were found in several areas of atrial goat tissue during 16 weeks of AF together with a progressive glycogen accumulation at the same time intervals. The expression of αSKA in adult dedifferentiating cardiomyocytes, in combination with PAS-positive glycogen and decreased cardiotin expression, offers an additional tool in the evaluation of myocardial dysfunction and indicates major changes in the contractile properties of these cells.  相似文献   

19.
Collagen is denatured in the gradual cervical ripening process during late pregnancy, already before the onset of final cervical ripening at parturition. Matrix Metallo Proteinases (MMPs) might be responsible for this process. To investigate the presence and potential function of MMPs at the different stages of the ripening process, serial cervical biopsies were obtained from 10 cows at Days 185 and 275 of pregnancy (approximately 5 days before calving), at parturition and at 30 days after parturition. The mRNA and protein expression of MMP-1, MMP-2, and MMP-9 and of the tissue inhibitors of MMPs (TIMP)-1 and TIMP-2 were semi-quantitatively determined using RT-PCR, respectively, zymography, Westernblot, and ELISA techniques and the localization of MMP-2 protein and presence of granulocytes by immunohistochemistry and Luna staining. At parturition compared to 185 days pregnancy the MMP-1 protein expression and the numbers of granulocytes were significantly increased by 3 and 26-fold respectively. MMP-2 mRNA and protein expression had already increased 2.5 (P < 0.05) and twofold (P < 0.05) at 5 days before parturition, prior to final ripening. At that time, MMP-2 was present in smooth muscle cells and extra cellular matrix. TIMP-1 mRNA expression was significantly increased at parturition and TIMP-2 mRNA expression peaked at 5 days before parturition. The increased expression of MMP-2 at 5 days before parturition, suggests that in the cow MMP-2 is responsible for collagen denaturation in the last part of gradual cervical ripening, while MMP-1 and MMP-9 are only active during the final cervical ripening process at parturition.  相似文献   

20.
The study of Hutchinson–Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin‐driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1‐target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号