首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In mammary gland explants subjected to experimental manipulation, average rates (during 24 h periods) of degradation of fatty acid synthase, casein and cytosol-fraction proteins were measured by a double-isotope method. Rates of degradation of fatty acid synthase were also computed from measurements of changing enzyme amount and rate of synthesis. 2. During the period of most rapid enzyme accumulation there is a transient decrease in the computed rate of degradation of fatty acid synthase. Removal of hormones produces a rapid increase in the computed rate of degradation of the enzyme. 3. The average rate of degradation of fatty acid synthase measured by the double-isotope method is low in the presence of hormones, and increases on hormone removal. This increase in degradation rate is inhibited by adrenaline and further blocked by insulin. NH4Cl (10 mM) also partially inhibits the increase in protein degradation on hormone removal. 4. The pattern of changes in the average rate of degradation of cytosol-fraction proteins is similar to that for fatty acid synthase alone. There is no relationship between subunit molecular weight and rate of degradation under all experimental conditions. 5. Isotope ratios for resolved cytosol protein mixtures are transformed logarithmically to make the standard deviations an estimate of heterogeneity of degradation rates. By this analysis, in some conditions there appears to be significant measureable heterogeneity of degradation rates. 6. Little degradation of casein is measured in the presence of hormones, but a marked increase in the rate of degradation can be measured when hormones are removed. Whereas at 24-48h NH4Cl (10 mM) has little effect on this enhanced rate of degradation, at 48-72h it causes a large decrease in degradation rate. 7. Results are discussed in terms of a two-component degradation system in mammary gland explants.  相似文献   

2.
To accurately interpret the data from fluorescent proteins as reporters of gene activation within living cells, it is important to understand the kinetics of the degradation of the reporter proteins. We examined the degradation kinetics over a large number (>1,000) of single, living cells from a clonal population of NIH3T3 fibroblasts that were stably transfected with a destabilized, enhanced green fluorescent protein (eGFP) reporter driven by the tenascin-C promoter. Data collection and quantification of the fluorescence protein within a statistically significant number of individual cells over long times (14 h) by automated microscopy was facilitated by culturing cells on micropatterned arrays that confined their migration and allowed them to be segmented using phase contrast images. To measure GFP degradation rates unambiguously, protein synthesis was inhibited with cycloheximide. Results from automated live cell microscopy and image analysis indicated a wide range of cell-to-cell variability in the GFP fluorescence within individual cells. Degradation for this reporter was analyzed as a first order rate process with a degradation half-life of 2.8 h. We found that GFP degradation rates were independent of the initial intensity of GFP fluorescence within cells. This result indicates that higher GFP abundance in some cells is likely due to higher rates of gene expression, because it is not due to systematically lower rates of protein degradation. The approach described in this study will assist the quantification and understanding of gene activity within live cells using fluorescent protein reporters.  相似文献   

3.
Metabolic pathways are controlled primarily by protein degradation rates. Degradation rates, in turn, are controlled by changes in physiologic condition or nutrient supply. Vitamin B(6) is associated with a greater variety of reactions than most other vitamins. Moreover, the vitamin B(6) needs of the elderly tend to be higher than those of young adults. Neutrophils seem to be appropriate cells for assessing protein turnover as affected by macronutrients and micronutrients. Thus, we assumed that vitamin B(6) supplementation, particularly in an elderly population, would change the turnover rates of the neutrophil proteins. Protein synthesis was measured after 30 minutes of (35)S-Met incorporation followed by a 30-minute washout incubation; degradation was measured after an additional 5-hour incubation. Following protein separation, radioactive images of short-lived proteins were electronically separated into bands. Vitamin B(6) supplementation significantly increased the synthesis of most neutrophil protein bands. There was a significant decrease of 25 to 66% in the degradation rates of 235 protein bands. We even detected by statistical evaluation a 20% decrease in the degradation rates of distinct protein bands. Activation coefficients of erythrocyte aspartate aminotransferase (AC-AST) decreased markedly. There was a significant positive correlation between the decrease in AC-AST and protein degradation. The N-end rule proposes that pyridoxal 5'-phosphate decreases degradation rates of short-lived proteins by binding to lysyl residues. A biochemical model of the mechanism of cellular protein turnover, as affected by nutritional intervention, in human neutrophils is demonstrated.  相似文献   

4.
The degradation of nine well-defined proteins was studied in cultured mouse peritoneal macrophages following their uptake by fluid phase pinocytosis. After uptake, approximately one-third of the radioactivity was released into the medium in the form of trichloroacetic acid/phosphotungstic acid-insoluble material. When the time courses for the appearance of trichloroacetic acid/phosphotungstic acid-soluble and -insoluble radioactivities were independently analyzed, identical observed rate constants (kobs) were obtained. This is in agreement with an earlier claim that regurgitated protein and low molecular weight products arise from a common intracellular pool of radiolabeled substrates, presumably within lysosomes, and that the traffic of substrates between the plasma membrane and the lysosome is probably bidirectional (Buktenica, S., Olenick, S. J., Salgia, R., and Frankfater, A. (1987) J. Biol. Chem. 262, 9469-9476). When intrinsic degradation rate constants (kd) were calculated, these were found to vary inversely with protein subunit molecular weights, from 0.0347 h-1 for horse heart cytochrome c to 0.0104 h-1 for rabbit muscle phosphorylase b. The proportion of peptide bonds in a protein which are initially available to the action of lysosomal proteases should be proportional to the fraction of the total potential surface of a protein which remains accessible to solvent after polypeptide folding (AS/AT). In agreement, lysosomal degradation rates were observed to correlate well with known or estimated values of AS/AT, and thermal denaturation, which may expose previously buried amino acid residues, increased the rate of degradation of bovine serum albumin.  相似文献   

5.
Qi J  Gong J  Zhao T  Zhao J  Lam P  Ye J  Li JZ  Wu J  Zhou HM  Li P 《The EMBO journal》2008,27(11):1537-1548
We previously showed that Cidea(-/-) mice are resistant to diet-induced obesity through the upregulation of energy expenditure. The AMP-activated protein kinase (AMPK), consisting of catalytic alpha subunit and regulatory subunits beta and gamma, has a pivotal function in energy homoeostasis. We show here that AMPK protein levels and enzymatic activity were significantly increased in the brown adipose tissue of Cidea(-/-) mice. We also found that Cidea is colocalized with AMPK in the endoplasmic reticulum and forms a complex with AMPK in vivo through specific interaction with the beta subunit of AMPK, but not with the alpha or gamma subunit. When co-expressed with Cidea, the stability of AMPK-beta subunit was dramatically reduced due to increased ubiquitination-mediated degradation, which depends on a physical interaction between Cidea and AMPK. Furthermore, AMPK stability and enzymatic activity were increased in Cidea(-/-) adipocytes differentiated from mouse embryonic fibroblasts or preadipocytes. Our data strongly suggest that AMPK can be regulated by Cidea-mediated ubiquitin-dependent proteosome degradation, and provide a molecular explanation for the increased energy expenditure and lean phenotype in Cidea-null mice.  相似文献   

6.
The rates of [3H]Nτ-methylhistidine (3-MH) accumulation in the medium, following pulse labelling of cells for 48 h with [3H]methionine, were used to measure myofibrillar protein degradation. In fused C2C12 myotubes, incubation for 24 or 48 h after the labelling period gave rates of myofibrillar degradation of 38 and 42%/day. In a leucine free medium, these rates were similar; 40 and 47%/day, respectively. Using identical conditions ± leucine, but in the absence of [3H]-methionine, rates of protein accretion and synthesis over 24–48 h were measured. From these data, rates of total protein degradation were calculated by difference and were similar to myofibrillar degradation rates. We have used the same pulse labelling protocol to assess whether the method is applicable to non-muscle cell lines based on the knowledge that 3T3 fibroblasts contain actin in the cytoskeleton. 3-MH was detected both in protein and upon its release into the medium. Actin degradation measured over a 48 h period gave a value half that obtained for total degradation, but the results suggest that the release of 3-MH by fibroblasts in vivo could be appreciable. The development of this methodology should provide a useful tool to investigate signalling mechanisms regulating actin degradation in a variety of cell types. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Protein degradation in rat liver during post-natal development.   总被引:4,自引:2,他引:2       下载免费PDF全文
Protein degradation rates for liver subcellular and submitochondrial fractions from neonatal (8-day), weanling (25-day) and adult rats were estimated by the double-isotope method with NaH14CO3 and [3H] arginine as the radiolabelled precursors [Dice, Walker, Byrne & Cardiel (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2093-2097]. Decreased protein degradation rates were found during post-natal development for homogenate, nuclear, mitochondrial, lysosomal and microsomal proteins. A decrease in degradation rates for the immunoisolated subunits of monoamine oxidase and pyruvate dehydrogenase was also observed in neonatal and weanling rats respectively. The results suggest coordinate degradation of the subunits of the multi-subunit enzyme pyruvate dehydrogenase. Pyruvate dehydrogenase has a faster rate of degradation in adult rat liver than does cytochrome oxidase. Data analysis suggests heterogeneity of protein degradation rates in the mitochondrial outer membrane and intermembrane space fractions at each developmental stage but not in the mitochondrial inner membrane or matrix fractions. Results obtained for protein degradation rates in adult rat liver by the method of Burgess, Walker & Mayer [(1978) Biochem. J. 176, 919-926] in general confirmed the results obtained for the adult rat liver by the above method. No evidence of a subunit-size relationship for protein degradation was found for proteins in any subcellular or submitochondrial fraction.  相似文献   

8.
Exchange and stability of HeLa ribosomal proteins in vivo.   总被引:10,自引:0,他引:10  
The relative stabilities of individual HeLa ribosomal proteins and their capacity for exchange between ribosome-bound and -free states in the cytoplasm were examined. Most ribosomal proteins on cytoplasmic ribosomes were found to have uniform, high stability as measured by comparing the short term (12-hour) to steady state (3-day) labeling ratios determined for each ribosomal protein. This would be expected if the proteins in ribosomes either were all stable or were all degraded as a unit. The data do not rule out the possibility that individual proteins have different stabilities prior to their assembly into ribosomes. Four proteins labeled atypically. One large subunit protein (L5) had a lower than average ratio. We interpret this low ratio as being due to a large free pool of this protein. Three proteins (L10, L28, S2) had higher than average ratios, interpreted as being due to reduced protein stability. Two of these proteins (L10, L28) with high ratios were also found to exchange in vivo. The exchangeable proteins may be subject to increased degradation during the time that they spend in the exchangeable free pool. The third protein (S2) with an atypically high ratio is thought to be degraded or altered while on the ribosome, or slowly lost as ribosomes age, because exchange of this protein was not detected. These interpretations and some alternate interpretations are explained. The exchange of three large subunit proteins (L10, L19, L28) was detected by labeling of protein after ribosome synthesis had been inhibited with actinomycin D. Autoradiography of two-dimensional polyacrylamide gels showed labeling of these spots.  相似文献   

9.
Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely.  相似文献   

10.
Current understanding of the molecular mechanisms underlying mRNA degradation indicates that specific mRNA degradation rates are primarily encoded within the mRNA message itself in the form of cis-regulatory elements bearing particular primary sequences and/or secondary-structures. Such control elements are operated by RNA-binding proteins (RBPs) and/or miRNA-containing complexes. Based on the large number of RBPs and miRNAs encoded in metazoan genomes, their complex developmental expression and that specific RBP and miRNA interactions with mRNAs can lead to distinct degradation rates, I propose that developmental gene expression is shaped by a complex 'mRNA degradation code' with high information capacity. Localised cellular events involving the modification of RBP and/or miRNA target sequences in mRNAs by alternative polyadenylation added to the activation of specific RBP and miRNA activities via cell signalling are predicted to further expand the capacity of the mRNA degradation code by coupling it to dynamic events experienced by cells at specific spatiotemporal coordinates within the developing embryo.  相似文献   

11.
Cereblon (CRBN), a substrate receptor for Cullin-ring E3 ubiquitin ligase (CRL), is a major target protein of immunomodulatory drugs. An earlier study demonstrated that CRBN directly interacts with the catalytic α subunit of AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, down-regulating the enzymatic activity of AMPK. However, it is not clear how CRBN modulates AMPK activity. To investigate the mechanism of CRBN-dependent AMPK inhibition, we measured protein levels of each AMPK subunit in brains, livers, lungs, hearts, spleens, skeletal muscles, testes, kidneys, and embryonic fibroblasts from wild-type and Crbn−/− mice. Protein levels and stability of the regulatory AMPKγ subunit were increased in Crbn−/− mice. Increased stability of AMPKγ in Crbn−/− MEFs was dramatically reduced by exogenous expression of Crbn. In wild-type MEFs, the proteasomal inhibitor MG132 blocked degradation of AMPKγ. We also found that CRL4CRBN directly ubiquitinated AMPKγ. Taken together, these findings suggest that CRL4CRBN regulates AMPK through ubiquitin-dependent proteasomal degradation of AMPKγ.  相似文献   

12.
Wheat leaves (Triticum aestivum L.) at the moment of their maximum expansion were detached and put in darkness. Their protein, RNA and DNA contents, as well as their rates of protein synthesis and degradation, were measured at different times from 0 to 5 days after detachment. Rates of protein synthesis were measured by incorporation into proteins of large amounts of [3H]leucine. Fractional rates of protein degradation were estimated either from the difference between the rates of synthesis and the net protein change or by the disappearance of radioactivity from proteins previously labeled with [3H]leucine or [14C]proline.

Protein loss reached a value of 20% during the first 48 hours of the process. RNA loss paralleled that of protein, whereas DNA content proved to be almost constant during the first 3 days and decreased dramatically thereafter.

Measurements of protein synthesis and degradation indicate that, in spite of a slowdown in rate of protein synthesis, an increased rate of protein breakdown is mainly responsible for the observed rapid protein loss.

  相似文献   

13.
The studies presented herein were aimed at characterizing the pathway involved in the internalization and degradation of human choriogonadotropin by cultured Leydig tumor cells. A quick biochemical method that differentiates between the surface-bound and internalized hormone was developed. Using this method and two hormone derivatives labeled exclusively (with 125I) in the alpha or beta subunits, it was possible to follow the fate of each hormone subunit during hormone binding, internalization, and degradation. The results show that the hormone is internalized in the intact form and that it reaches its place of degradation (presumably the lysosomes) in the intact form. The pathway for degradation of the internalized hormone is complex, and it appears to involve processing of one or both subunits of the intact hormone, followed by subunit dissociation and further degradation of the individual subunits. The alpha subunit is quickly degraded by the cells. The only detectable degradation products are extracellular amino acids. The beta subunit is degraded slower, and several intracellular degradation products are detectable before amino acids appear in the medium.  相似文献   

14.
J Oberdorf  E J Carlson  W R Skach 《Biochemistry》2001,40(44):13397-13405
Misfolded proteins in the endoplasmic reticulum (ER) are degraded by N-terminal threonine proteases within the 26S proteasome. Each protease is formed by an activated beta subunit, beta5/X, beta1/Y, or beta2/Z, that exhibits chymotrypsin-like, peptidylglutamyl-peptide hydrolyzing, or trypsin-like activity, respectively. Little is known about the relative contribution of specific beta subunits in the degradation of endogenous protein substrates. Using active site proteasome inhibitors and a reconstituted degradation system, we now show that all three active beta subunits can independently contribute to ER-associated degradation of the cystic fibrosis transmembrane conductance regulator (CFTR). Complete inactivation (>99.5%) of the beta5/X subunit decreased the rate of ATP-dependent conversion of CFTR to trichloroacetic acid soluble fragments by only 40%. Similarly, proteasomes containing only active beta1/Y or beta2/Z subunits degraded CFTR at approximately 50% of the rate observed for fully functional proteasomes. Simultaneous inhibition (>93%) of all three beta subunits blocked CFTR degradation by approximately 90%, and inhibition of both protease and ATPase activities was required to completely prevent generation of small peptide fragments. Our results demonstrate both a conserved hierarchy (ChT-L > PGPH > or = T-L) as well as a redundancy of beta subunit function and provide insight into the mechanism by which active site proteasome inhibitors influence degradation of endogenous protein substrates at the ER membrane.  相似文献   

15.
Intracellular protein degradation was investigated using an unstable fragment of Escherichia coli beta-galactosidase, the CSH11 mutant, as a model protein. This abnormal protein was expressed from a single copy gene in the chromosome and is converted to a detectable degradable intermediate. The in vivo degradation rates of both beta-galactosidase fragments were measured using pulse-chase radioactive labeling techniques, and their intracellular concentrations were determined using alpha-complementation assays. In the physiological range of 30 to 37 degrees C, the apparent degradation rate constant for the CSH11 fragment follows Arrhenius behavior; while the intermediate's apparent degradation rate constant is nearly unchanged. However, above 37 degrees C the degradation rates of both fragments increase significantly. Analysis of the labeled intermediate's rate of change above 40 degrees C reveals that the CSH11 fragment is being degraded by a second pathway which does not produce the intermediate. When the induction level of the abnormal beta-galactosidase was varied the degradation rates of both fragments behaved similarly, but they unexpectedly decreased with increasing IPTG concentration. The two parallel degradation pathways for CSH11 apparently operated at only the lower IPTG levels. The measured degradation rates did not correlate directly with the intracellular concentration of abnormal proteins.  相似文献   

16.
Changes in the rates of de novo synthesis of proteins and in the rates of degradation of proteins were studied in cultured androgen-responsive tumour cells. The proliferation rate of these cells is regulated both by cell population density and by physiological concentrations of androgens, such as testosterone. Both rates of de novo synthesis and rates of degradation of proteins changed with proliferation rate, although neither were directly proportional to proliferation rate. By contrast, the net rate of protein accumulation was always directly proportional to proliferation rate. This relationship held despite the fact that the mean amounts of protein and RNA per cell changed with density. These results suggest that, under certain conditions, a change in the net rate of protein accumulation may be sufficient to change proliferation rate.  相似文献   

17.
The effects of cyclic AMP treatment on total cAMP-dependent protein kinase activity in GH3 pituitary tumor cells have been studied. Incubation of cells for 24 h with 1 microM forskolin resulted in a 50% decrease in total cAMP-dependent protein kinase activity which was reversible upon removal of forskolin from culture media. A similar response was observed in GH3 cells treated with 5 ng/ml cholera toxin and 0.5 mM dibutyryl cAMP but not 0.5 mM dibutyryl cGMP. Northern blot analysis demonstrated that the steady-state level of the mRNA for each of the six kinase subunit isoforms studied was not detectably altered after treatment with 1 microM forskolin for 24 h. The concentration of catalytic subunit was also assessed by binding studies using a radiolabeled heat-stable protein kinase inhibitor. Treatment of GH3 cells with 1 microM forskolin for 24 h reduced protein kinase inhibitor binding activity by 50%, consistent with the observed forskolin-induced decrease in total kinase activity. Analysis of endogenous heat-stable protein kinase inhibitor activity in GH3 cell extracts showed no significant difference between forskolin-treated cells and cells maintained under control conditions. To assess possible effects on catalytic subunit degradation, pulse-chase experiments were performed and radiolabeled catalytic subunit was isolated by affinity chromatography. The results demonstrated that treatment of cells with chlorophenylthio-cAMP detectably increased the apparent degradation of radiolabeled catalytic subunit. The increased degradation of the catalytic subunit was sufficient to account for the observed decreases in kinase activity. These results suggest that relatively long term cAMP treatment can alter total cAMP-dependent protein kinase activity through effects to alter the degradation of the catalytic subunit of the enzyme.  相似文献   

18.
Fractional rates of synthesis and degradation of liver porteins were estimated during the rapid restoration of liver mass observed in protein-depleted mice when they are fed with an adequate diet. 1. Net protein gain was fastest 12h after the nutritional shift, when it reached a rate of 48% per day. 2. The RNA/protein ratio in livers of protein-depleted animals was essentially the same as in normal livers; it increased by a maximum of 13% 12h after the nutritional shift. 3. Rates of protein synthesis in vivo were measured by the incorporation into liver protein of massive amounts of L-[1-14C]leucine. In protein-depleted animals, the rate of synthesis per mg of RNA was 72% of that in normal livers. Normal rates were recovered within 12h of the nutritional shift. 4. The fraction of newly synthesized protein retained by the liver was studied after they were pulse-labelled by the intravenous injection of radioactive leucine, and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis); 3h later the livers in both experimental situations retained 58% of the newly synthesized protein. 5. Fractional rates of protein degradation were estimated either from the difference between the synthesis of stable liver proteins and the net protein increase, or by the disappearance of radioactivity from the liver protein previously labelled by the administration to the mice of NaH14CO3. Both procedures demonstrated a large decrease in the rate of protein degradation during liver growth.  相似文献   

19.
Summary Although several proteases have been identified in homogenates of cultured epithelial cells of the eye lens and in lens tissues, there is little information regarding intracellular protein degradation in intact lens cells in vitro. Cultured lens cells may be useful in the study of intracellular protein degradation in the lens, a tissue with a wide range of protein half-lives. This is of interest because alterations in protein turnover in the lens have been implicated in cataract formation. This study examines intracellular protein degradation in cultured bovine lens epithelial cells (BLEC). Cell cultures were incubated with radiolabeled leucine to label intracellular proteins. Protein degradation was measured by monitoring the release of trichloroacetic-acid-soluble radioactivity into the culture medium. The average half-life of long-lived proteins (half-life >50 h) was typically about 57 h in serum-supplemented medium. Average rates of degradation of long-lived proteins increased by up to 73% when fetal bovine serum was withdrawn from the culture medium. Serum had no effect on the degradation of short-lived proteins (half-life <10 h). Degradation of long-lived proteins in the presence and absence of serum was further studied in cultured BLEC from population doubling level (PDL) 2 to 43. Average half-life of proteins in serum-supplemented medium was 52 to 58 h and did not vary significantly as a function of PDL. Degradation rates in serum-free medium increased approximately twofold up to PDL 7, but returned by PDL 25 to original levels, which were maintained through PDL 43. This work was supported in part by grants from U. S. Department of Agriculture contract 53-3K06-5-10, Massachusetts Lions Eye Research Fund, Inc., and the Daniel and Florence Guggenheim Foundation. D. A. E. is a recipient of a National Eye Institute postdoctoral fellowship.  相似文献   

20.
Lysosomes of cystinotic human fibroblasts contain over 100-times the normal concentration of cystine. The high cystine concentration (probably in the millimolar range) might be expected to inhibit intralysosomal protein breakdown. A comparison of pinocytosis and degradation of five 125I-labelled proteins (bovine serum albumin, formaldehyde-denatured bovine serum albumin, bovine pancreatic ribonuclease A and porcine lactate dehydrogenase isoenzymes H4 and M4) by human fibroblasts has been made, using one cystinotic and two normal cell-lines. The proteins each entered fibroblasts by adsorptive pinocytosis and were then degraded within the lysosomes by enzymes susceptible to leupeptin, the thiol-proteinase inhibitor. Each protein was captured by the fibroblasts at a characteristic rate, which was not different in cystinotic cells. Normal and cystinotic fibroblasts did not differ in their proteolytic capacity, as measured in extracts of disrupted cells. In intact fibroblasts, four of the five proteins were rapidly and fully digested following pinocytosis, in both cystinotic and normal cells. However, with formaldehyde-denatured albumin, the most resistant to degradation of the proteins tested, or with some other proteins in the presence of leupeptin, when the proteolytic capacity of lysosomes is diminished, intralysosomal degradation of pinocytosed protein was incomplete. Moreover, under these conditions, cystinotic cells demonstrated a lower rate of protein digestion than normal cells. It is concluded that pinocytic capture, rather than intralysosomal proteolysis, is commonly the rate-limiting step in the overall process of uptake and degradation of proteins by fibroblasts, and that intralysosomal cystine inhibits digestion of pinocytosed protein only in circumstances when degradation becomes the rate-limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号