首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
Objective: The scavenger receptor CD36 facilitates the cellular uptake of long‐chain fatty acids. As CD36‐deficiency attenuates the development of high fat diet (HFD)‐induced obesity, the role of CD36‐deficiency in preadipocyte recruitment and adipocyte function was set out to characterize. Design and Methods: Fat cell size and number were determined in gonadal, visceral, and subcutaneous adipose tissue of CD36?/? and WT mice after 6 weeks on HFD. Basal lipolysis and insulin‐inhibited lipolysis were investigated in gonadal adipose tissue. Results: CD36?/? mice showed a reduction in adipocyte size in all fat pads. Gonadal adipose tissue also showed a lower total number of adipocytes because of a lower number of very small adipocytes (diameter <50 μm). This was accompanied by an increased pool of preadipocytes, which suggests that CD36‐deficiency reduces the capacity of preadipocytes to become adipocytes. Regarding lipolysis, in adipose tissue from CD36?/? mice, cAMP levels were increased and both basal and 8‐bromo‐cAMP stimulated lipolysis were higher. However, insulin‐mediated inhibition of lipolysis was more potent in CD36?/? mice. Conclusions: These results indicate that during fat depot expansion, CD36‐deficiency negatively affects preadipocyte recruitment and that in mature adipocytes, CD36‐deficiency is associated with increased basal lipolysis and insulin responsiveness.  相似文献   

2.
Objective: To directly ascertain the physiological roles in adipocytes of hormone‐sensitive lipase (HSL; E.C. 3.1.1.3), a multifunctional hydrolase that can mediate triacylglycerol cleavage in adipocytes. Research Methods and Procedures: We performed constitutive gene targeting of the mouse HSL gene (Lipe), subsequently studied the adipose tissue phenotype clinically and histologically, and measured lipolysis in isolated adipocytes. Results: Homozygous HSL?/? mice have no detectable HSL peptide or cholesteryl esterase activity in adipose tissue, and heterozygous mice have intermediate levels with respect to wild‐type and deficient littermates. HSL‐deficient mice have normal body weight but reduced abdominal fat mass compared with normal littermates. Histologically, both white and brown adipose tissues in HSL?/? mice show marked heterogeneity in cell size, with markedly enlarged adipocytes juxtaposed to cells of normal morphology. In isolated HSL?/? adipocytes, lipolysis is not significantly increased by β3‐adrenergic stimulation, but under basal conditions in the absence of added catecholamines, the lipolytic rate of isolated HSL?/? adipocytes is at least as high as that of cells from normal controls. Cold tolerance during a 48‐hour period at 4 °C was similar in HSL?/? mice and controls. Overnight fasting was well‐tolerated clinically by HSL?/? mice, but after fasting, liver triglyceride content was significantly lower in HSL?/? mice compared with wild‐type controls. Conclusions: In isolated fat cells, the lipolytic rate after β‐adrenergic stimulation is mainly dependent on HSL. However, the observation of a normal rate of lipolysis in unstimulated HSL?/? adipocytes suggests that HSL‐independent lipolytic pathway(s) exist in fat. Physiologically, HSL deficiency in mice has a modest effect under normal fed conditions and is compatible with normal maintenance of core body temperature during cold stress. However, the lipolytic response to overnight fasting is subnormal.  相似文献   

3.
Objectives:Neuropeptide Y (NPY) is involved in the coordination of bone mass and adiposity. However, multiple NPY sources exist and their individual contribution to the skeleton and adiposity not known. The objectives of our study were to evaluate the effects of peripheral mesenchymal derived NPY to the skeleton and adiposity and to compare them to the global NPYKO model.Methods:To study the role of mesenchymal-derived NPY, we crossed conditional NPY (NPYfl/fl) mice with Prx1cre to generate PrxNPYKO mice. The bone phenotype was assessed using micro-CT. The skeletal phenotype of PrxNPYKO mice was subsequently compared to global NPYKO model. We evaluated body weight, adiposity and functionally assessed the feeding response of NPY neurons to determine whether central NPY signaling was altered by Prx1cre.Results:We identified the increase in cortical parameters in PrxNPYKO mice with no changes to cancellous bone. This was the opposite phenotype to global NPYKO mice generated from the same conditional allele. Male NPYKO mice have increased adiposity, while PrxNPYKO mice showed no difference, demonstrating that local mesenchymal-derived NPY does not influence adiposity.Conclusion:NPY mediates both positive and negative effects on bone mass via separate regulatory pathways. Deletion of mesenchymal-derived NPY had a positive effect on bone mass.  相似文献   

4.
The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre‐ or postsynaptic compartments. Here, we demonstrate that TIMP‐2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP‐2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP‐2?/? mice fall off the RotaRod significantly faster than wild‐type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP‐2?/? mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP‐2?/? mice. Juvenile TIMP‐2?/? mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP‐2?/? endplates are enlarged and more complex. This suggests a role for TIMP‐2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP‐2?/? motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP‐2?/? motor phenotype. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

5.
The neurogenic niche of the anterior subventricular zone (SVZ) persistently generates neuroblasts, which migrate along the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into granule and periglomerular cells. Loss of the neural cell adhesion molecule NCAM or its post‐translational modification polysialic acid (polySia) impairs migration causing accumulations of cells in the proximal RMS and decreased OB volume. Polysialylation of NCAM is implemented by two polysialyltransferases, ST8SIA2 and ST8SIA4, with overlapping functions. Here, we used mice with Ncam1 and polysialyltransferase deletions to analyze how partial or complete loss of polySia synthesis or a combined loss of polySia and NCAM affects the RMS and the interneuron composition in the OB. Numerous calretinin (CR)‐positive cells were detected dispersed around the RMS in Ncam1 knockout, St8sia2, St8sia4 double‐knockout, and St8sia2, St8sia4, Ncam1 triple‐knockout mice, as well as in St8sia2 ?/? but not in St8sia4 ?/? mice. These changes were not reflected by reductions of CR‐positive cells in the granule or glomerular layer of the OB. Instead, calbindin‐positive periglomerular interneurons were strongly reduced in all polySia‐NCAM negative mice and slightly attenuated in St8sia2 ?/? as well as in the St8sia4 ?/? mice, which were devoid of ectopic CR‐positive cells along the RMS. Consistent with the early developmental generation of calbindin‐ as compared with CR‐positive OB interneurons, this phenotype was fully developed at postnatal day 5. Together, these results demonstrate that the early development of calbindin‐positive periglomerular interneurons depends on the presentation of polySia on NCAM and requires the activity of both polysialyltransferases. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 421–433, 2016  相似文献   

6.
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI?/?) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI?/? mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI?/? mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.  相似文献   

7.
ATM‐mediated phosphorylation of KAP‐1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24?/? mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM‐Kap‐1 signaling is compromised in Zmpste24?/? MEFs, leading to defective DNA damage‐induced chromatin remodeling. Knocking down Kap‐1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24?/? MEFs. Thus, ATM‐Kap‐1‐mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.  相似文献   

8.
9.
Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP?/?) mice were analyzed. ClpP?/? mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole‐body energy expenditure and markers of mitochondrial biogenesis are selectively up‐regulated in the white adipose tissue (WAT) of ClpP?/? mice. When challenged with a metabolic stress such as high‐fat diet, despite similar caloric intake, ClpP?/? mice are protected from diet‐induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.  相似文献   

10.
Objective: To determine whether the leukocyte adhesion receptors ICAM‐1 and Mac‐1, regulators of immune cell migration, have an intrinsic role within adipose tissue by 1) analyzing the expression of ICAM‐1 in adipose tissue, 2) identifying leukocyte populations within adipose tissue, and 3) determining whether ICAM‐1 and Mac‐1 mutant mice exhibit abnormal numbers of adipose tissue leukocytes. Research Methods and Procedures: Wild‐type, ICAM‐1?/?, and Mac‐1?/? mice were fed a long‐term high‐fat diet. ICAM‐1 expression was analyzed by Northern blot and immunohistochemistry. Leukocytes within adipose tissue were identified by immunohistochemistry and flow cytometry. Results: ICAM‐1 was expressed in adipose tissue and localized to the vascular endothelium. Macrophages and lymphocytes were prevalent within the stromal‐vascular cell fraction of adipose tissue, and gender‐specific differences were observed, with adipose tissue from female mice containing significantly more macrophages than tissue from male mice. Numbers of leukocytes in ICAM‐1?/? and Mac‐1?/? mice were not different from wild‐types, however, indicating that these adhesion receptors are not required for leukocyte migration into adipose tissue. Discussion: Our results documented leukocyte populations within adipose tissue, which may be involved in the development of heightened inflammation that is characteristic of obesity.  相似文献   

11.
Host factors such as nutritional status and immune cell state are important for vaccine efficacy. Inflammasome activation may be important for triggering vaccine‐induced humoral and cell‐mediated immune responses. Formulations with alum as a typical adjuvant to overcome the effects of host factors have recently been shown to induce inflammasome activation, which augments vaccine efficacy. Apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC) is one of the main components of inflammasomes, but it is not clear whether ASC affects the vaccine‐induced immune response. Herein, we used two types of vaccines: inactivated influenza vaccine not formulated with alum, and HPV vaccine formulated with alum. We gave the vaccines to ASC knockout (ASC?/?) mice to investigate the role of ASC in vaccine efficacy. Influenza vaccine‐immunized ASC?/? mice did not show antibody titers in week 2 after the first vaccination. After boosting, the antibody titer in ASC?/? mice was about half that in wild type (WT) mice. Furthermore, a cytotoxic T‐lymphocyte response against influenza vaccine was not induced in ASC?/? mice. Therefore, vaccinated ASC?/? mice did not show effective protection against viral challenge. ASC?/? mice immunized with alum‐formulated HPV vaccine showed similar antibody titers and T‐cell proliferation compared with immunized WT mice. However, the HPV vaccine without alum induced up to threefold lower titers of HPV‐specific antibody titers in ASC?/? mice compared with those in WT mice. These findings suggest that alum in vaccine can overcome the ASC‐deficient condition.
  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin and tyrosine kinase growth factor signaling. We have recently demonstrated that PTP1B deficiency increases GLUT2/insulin receptor (IR) A complexes and glucose uptake in suckling, but not adult, primary hepatocytes. Herein we have investigated intrahepatic glucose utilization in 3–5 days old wild‐type and PTP1B?/? mice. PTP1B deficiency decreased glycogen, lactate, and pyruvate content in the livers from suckling mice. Conversely, the activity of glucose 6‐phosphate dehydrogenase (G6PD), the rate limiting enzyme of the pentose phosphate cycle (PPC) which provides substrates for DNA synthesis, was enhanced in the liver of PTP1B?/? animals. Liver weight, liver‐to‐body mass ratio, DNA content, and PCNA expression were increased in PTP1B?/? suckling mice compared to the wild‐type controls. At the molecular level, STAT 5B phosphorylation, IGF‐I mRNA, and protein levels as well as IGF‐IR tyrosine phosphorylation were increased in the livers of PTP1B‐deficient neonates. Unexpectedly, hepatic and serum triglycerides (TG) were increased by PTP1B deficiency, although the expression of lipogenic enzymes remained as in the wild‐type controls. However, the analysis of milk composition revealed higher TG content in lactating females lacking PTP1B. The effects of PTP1B deficiency on G6PD activity, STAT 5B/IGF‐I/IGF‐IR axis, PCNA expression and liver growth during suckling were maintained by transferring PTP1B?/? embryos (PTP1B?/?T) to a wild‐type female. Conversely, PTP1B?/?T mice did not show hepatic fat accumulation. In conclusion, the present study suggests that PTP1B plays a unique role in the control of the physiological liver development after birth. J. Cell. Physiol. 225: 214–222, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Aquaporin‐4 (AQP4), the main water‐selective membrane transport protein in the brain, is localized to the astrocyte plasma membrane. Following the establishment of a 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced Parkinson's disease (PD) model, AQP4‐deficient (AQP4?/?) mice displayed significantly stronger microglial inflammatory responses and remarkably greater losses of tyrosine hydroxylase (TH+)‐positive neurons than did wild‐type AQP4 (AQP4+/+) controls. Microglia are the most important immune cells that mediate immune inflammation in PD. However, recently, few studies have reported why AQP4 deficiency results in more severe hypermicrogliosis and neuronal damage after MPTP treatment. In this study, transforming growth factor‐β1 (TGF‐β1), a key suppressive cytokine in PD onset and development, failed to increase in the midbrain and peripheral blood of AQP4?/? mice after MPTP treatment. Furthermore, the lower level of TGF‐β1 in AQP4?/? mice partially resulted from impairment of its generation by astrocytes; reduced TGF‐β1 may partially contribute to the uncontrolled microglial inflammatory responses and subsequent severe loss of TH+ neurons in AQP4?/? mice after MPTP treatment. Our study provides not only a better understanding of both aetiological and pathogenical factors implicated in the neurodegenerative mechanism of PD but also a possible approach to developing new treatments for PD via intervention in AQP4‐mediated immune regulation.  相似文献   

14.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

15.
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9?/? and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9?/? mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9?/? mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9?/? mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder.  相似文献   

16.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

17.
Scar formation after brain injury is still poorly understood. To further elucidate such processes, here, we examine the interplay between astrocyte proliferation taking place predominantly at the vascular interface and monocyte invasion. Using genetic mouse models that decrease or increase reactive astrocyte proliferation, we demonstrate inverse effects on monocyte numbers in the injury site. Conversely, reducing monocyte invasion using CCR2?/? mice causes a strong increase in astrocyte proliferation, demonstrating an intriguing negative cross‐regulation between these cell types at the vascular interface. CCR2?/? mice show reduced scar formation with less extracellular matrix deposition, smaller lesion site and increased neuronal coverage. Surprisingly, the GFAP+ scar area in these mice is also significantly decreased despite increased astrocyte proliferation. Proteomic analysis at the peak of increased astrocyte proliferation reveals a decrease in extracellular matrix synthesizing enzymes in the injury sites of CCR2?/? mice, highlighting how early key aspects of scar formation are initiated. Taken together, we provide novel insights into the cross‐regulation of juxtavascular proliferating astrocytes and invading monocytes as a crucial mechanism of scar formation upon brain injury.  相似文献   

18.
An alarming global rise in the prevalence of obesity and its contribution to the development of chronic diseases is a serious health concern. Recently, obesity has been described as a chronic low‐grade inflammatory condition, influenced by both adipose tissue and immune cells suggesting proinflammatory cytokines may play a role in its etiology. Here we examined the effects of interleukin‐15 (IL‐15) on adipose tissue and its association with obesity. Over expression of IL‐15 (IL‐15tg) was associated with lean body condition whereas lack of IL‐15 (IL‐15?/?) results in significant increase in weight gain without altering appetite. Interestingly, there were no differences in proinflammatory cytokines such as IL‐6 and tumor necrosis factor‐α (TNF‐α) in serum between the three strains of mice. In addition, there were significant numbers of natural killer (NK) cells in fat tissues from IL‐15tg and B6 compared to IL‐15?/? mice. IL‐15 treatment results in significant weight loss in IL‐15?/? knockout and diet‐induced obese mice independent of food intake. Fat pad cross‐sections show decreased pad size with over expression of IL‐15 is due to adipocyte shrinkage. IL‐15 induces weight loss without altering food consumption by affecting lipid deposition in adipocytes. Treatment of differentiated human adipocytes with recombinant human IL‐15 protein resulted in decreased lipid deposition. In addition, obese patients had significantly lower serum IL‐15 levels when compared to normal weight individuals. These results clearly suggest that IL‐15 may be involved in adipose tissue regulation and linked to obesity.  相似文献   

19.
We have previously determined that integrin α11β1 is required on mouse periodontal ligament (PDL) fibroblasts to generate the force needed for incisor eruption. As part of the phenotype of α11?/? mice, the incisor PDL (iPDL) is thickened, due to disturbed matrix remodeling. To determine the molecular mechanism behind the disturbed matrix dynamics in the PDL we crossed α11?/? mice with the Immortomouse and isolated immortalized iPDL cells. Microarray analysis of iPDL cells cultured inside a 3D collagen gel demonstrated downregulated expression of a number of genes in α11‐deficient iPDL cells, including matrix metalloproteinase‐13 (MMP‐13) and cathepsin K. α11?/? iPDL cells in vitro displayed disturbed interactions with collagen I during contraction of attached and floating collagen lattices and furthermore displayed reduced MMP‐13 protein expression levels. The MMP‐13 specific inhibitor WAY 170523 and the Cathepsin K Inhibitor II both blocked part of the α11 integrin‐mediated collagen remodeling. In summary, our data demonstrate that in iPDL fibroblasts the mechanical strain generated by α11β1 integrin regulates molecules involved in collagen matrix dynamics. The positive regulation of α11β1‐dependent matrix remodeling, involving MMP‐13 and cathepsin K, might also occur in other types of fibroblasts and be an important regulatory mechanism for coordinated extracellular and intracellular collagen turnover in tissue homeostasis. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Oxidative stress and telomere attrition are considered the driving factors of aging. As oxidative damage to telomeric DNA favors the erosion of chromosome ends and, in turn, telomere shortening increases the sensitivity to pro‐oxidants, these two factors may trigger a detrimental vicious cycle. To check whether limiting oxidative stress slows down telomere shortening and related progeria, we have investigated the effect of p66SHC deletion, which has been shown to reduce oxidative stress and mitochondrial apoptosis, on late‐generation TERC (telomerase RNA component)‐deficient mice having short telomeres and reduced lifespan. Double mutant (TERC?/? p66SHC?/?) mice were generated, and their telomere length, fertility, and lifespan investigated in different generations. Results revealed that p66SHC deletion partially rescues sterility and weight loss, as well as organ atrophy, of TERC‐deficient mice, but not their short lifespan and telomere erosion. Therefore, our data suggest that p66SHC‐mediated oxidative stress and telomere shortening synergize in some tissues (including testes) to accelerate aging; however, early mortality of late‐generation mice seems to be independent of any link between p66SHC‐mediated oxidative stress and telomere attrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号