首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular progenitor cells (VPCs) present in the adventitia of the vessel wall play a critical role in the regulation of vascular repair following injury. This study aimed to assess the function of VPCs isolated from patients with Marfan syndrome (MFS). VPCs were isolated from control and MFS donors and characterized. Compared with control‐VPCs, MFS‐VPCs exhibited cellular senescence as demonstrated by increased cell size, higher SA‐β‐gal activity and elevated levels of p53 and p21. RNA sequencing showed that several cellular process‐related pathways including cell cycle and cellular senescence were significantly enriched in MFP‐VPCs. Notably, the expression level of TGF‐β1 was much higher in MFS‐VPCs than control‐VPCs. Treatment of control‐VPCs with TGF‐β1 significantly enhanced mitochondrial reactive oxidative species (ROS) and induced cellular senescence whereas inhibition of ROS reversed these effects. MFS‐VPCs displayed increased mitochondrial fusion and decreased mitochondrial fission. Treatment of control‐VPCs with TGF‐β1 increased mitochondrial fusion and reduced mitochondrial fission. Nonetheless, treatment of mitofusin2 (Mfn2)‐siRNA inhibited TGF‐β1‐induced mitochondrial fusion and cellular senescence. Furthermore, TGF‐β1‐induced mitochondrial fusion was mediated by the AMPK signalling pathway. Our study shows that TGF‐β1 induces VPC senescence in patients with MFS by mediating mitochondrial dynamics via the AMPK signalling pathway.  相似文献   

2.
Aging impairs the functions of human mesenchymal stem cells (MSCs), thereby severely reducing their beneficial effects on myocardial infarction (MI). MicroRNAs (miRNAs) play crucial roles in regulating the senescence of MSCs; however, the underlying mechanisms remain unclear. Here, we investigated the significance of miR‐155‐5p in regulating MSC senescence and whether inhibition of miR‐155‐5p could rejuvenate aged MSCs (AMSCs) to enhance their therapeutic efficacy for MI. Young MSCs (YMSCs) and AMSCs were isolated from young and aged donors, respectively. The cellular senescence of MSCs was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. Compared with YMSCs, AMSCs exhibited increased cellular senescence as evidenced by increased SA‐β‐gal activity and decreased proliferative capacity and paracrine effects. The expression of miR‐155‐5p was much higher in both serum and MSCs from aged donors than young donors. Upregulation of miR‐155‐5p in YMSCs led to increased cellular senescence, whereas downregulation of miR‐155‐5p decreased AMSC senescence. Mechanistically, miR‐155‐5p inhibited mitochondrial fission and increased mitochondrial fusion in MSCs via the AMPK signaling pathway, thereby resulting in cellular senescence by repressing the expression of Cab39. These effects were partially reversed by treatment with AMPK activator or mitofusin2‐specific siRNA (Mfn2‐siRNA). By enhancing angiogenesis and promoting cell survival, transplantation of anti‐miR‐155‐5p‐AMSCs led to improved cardiac function in an aged mouse model of MI compared with transplantation of AMSCs. In summary, our study shows that miR‐155‐5p mediates MSC senescence by regulating the Cab39/AMPK signaling pathway and miR‐155‐5p is a novel target to rejuvenate AMSCs and enhance their cardioprotective effects.  相似文献   

3.
Telomere shortening limits the proliferation of primary human fibroblasts by the induction of senescence, which is mediated by ataxia telangiectasia mutated‐dependent activation of p53. Here, we show that CHK2 deletion impairs the induction of senescence in mouse and human fibroblasts. By contrast, CHK2 deletion did not improve the stem‐cell function, organ maintenance and lifespan of telomere dysfunctional mice and did not prevent the induction of p53/p21, apoptosis and cell‐cycle arrest in telomere dysfunctional progenitor cells. Together, these results indicate that CHK2 mediates the induction of senescence in fibroblasts, but is dispensable for the induction of telomere dysfunction checkpoints at the stem and progenitor cell level in vivo.  相似文献   

4.
5.
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases.  相似文献   

6.
Hyaluronan‐binding protein 1 (HABP1), a multi‐compartmental, multi‐functional protein has a wide range of functions, which can be attributed to its ability to associate with a variety of cellular ligands. Earlier we have reported that HABP1 overexpression in rat normal fibroblasts (F‐HABP07) shows chronic generation of reactive oxygen species (ROS), induction of autophagy, and apoptosis. However, a significant proportion of cells remained viable after the majority went through apoptosis from 60 to 72 h. In this study, an attempt has been made to delineate the cellular events in the declined population of surviving cells. It has been elucidated here that, these cells at later time points of growth, that is, 72 and 84 h, not only appeared to shrink but also are devoid of autophagic vacuoles and displayed polyploidy. F‐HABP07 cells exhibited an altered cytoskeletal structure from their parental cell line F111, assumed to be caused upon inhibition of actin polymerization and decrease in IQ motif‐containing GTPase activating protein 1 (IQGAP1), a key protein associated with maintenance of cytoskeletal integrity. Enhanced expression and nuclear localization of AKT observed in F‐HABP07 cells appears to be contributing toward the maintenance of high ROS levels in these cells and also potentially modulating the IQGAP1 activity. These observations, in fact have been considered to result in sustained DNA damage, which then leads to increased expression of p53 and activation of p21 and carry out the cellular events responsible for senescence. Subsequent assessment of the presence of positive β‐gal staining and enhanced expression of p16INK4a in F‐HABP07, confirmed that HABP1 overexpressing fibroblasts undergo senescence.  相似文献   

7.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

8.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

9.
Summary: Senescence‐associated β‐galactosidase (SA‐β‐gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA‐β‐gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA‐β‐gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic β‐galactosidase function in these organelles. SA‐β‐gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos. genesis 52:300–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
YAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells. Regulation of deoxynucleotide metabolism is required for YAP‐induced cell growth and underlies the resistance of YAP‐addicted cells to chemotherapeutics targeting dNTP synthesis. During RAS‐induced senescence, YAP/TAZ bypass RAS‐mediated inhibition of nucleotide metabolism and control senescence. Endogenous YAP/TAZ targets and signatures are inhibited by RAS/MEK1 during senescence, and depletion of YAP/TAZ is sufficient to cause senescence‐associated phenotypes, suggesting a role for YAP/TAZ in suppression of senescence. Finally, mechanical cues, such as ECM stiffness and cell geometry, regulate senescence in a YAP‐dependent manner. This study indicates that YAP/TAZ couples cell proliferation with a metabolism suited for DNA replication and facilitates escape from oncogene‐induced senescence. We speculate that this activity might be relevant during the initial phases of tumour progression or during experimental stem cell reprogramming induced by YAP.  相似文献   

11.
Aging is a multifactorial process characterized by the progressive deterioration of physiological functions. Among the multiple molecular mechanisms, microRNAs (miRNAs) have increasingly been implicated in the regulation of Aging process. However, the contribution of miRNAs to physiological Aging and the underlying mechanisms remain elusive. We herein performed high‐throughput analysis using miRNA and mRNA microarray in the physiological Aging mouse, attempted to deepen into the understanding of the effects of miRNAs on Aging process at the “network” level. The data showed that various p53 responsive miRNAs, including miR‐124, miR‐34a and miR‐29a/b/c, were up‐regulated in Aging mouse compared with that in Young mouse. Further investigation unraveled that similar as miR‐34a and miR‐29, miR‐124 significantly promoted cellular senescence. As expected, mRNA microarray and gene co‐expression network analysis unveiled that the most down‐regulated mRNAs were enriched in the regulatory pathways of cell proliferation. Fascinatingly, among these down‐regulated mRNAs, Ccna2 stood out as a common target of several p53 responsive miRNAs (miR‐124 and miR‐29), which functioned as the antagonist of p21 in cell cycle regulation. Silencing of Ccna2 remarkably triggered the cellular senescence, while Ccna2 overexpression delayed cellular senescence and significantly reversed the senescence‐induction effect of miR‐124 and miR‐29. Moreover, these p53 responsive miRNAs were significantly up‐regulated during the senescence process of p21‐deficient cells; overexpression of p53 responsive miRNAs or knockdown of Ccna2 evidently accelerated the cellular senescence in the absence of p21. Taken together, our data suggested that the p53/miRNAs/Ccna2 pathway might serve as a novel senescence modulator independent of p53/p21 pathway.  相似文献   

12.
In most cervical cancer cells, p53 and Rb are disrupted by human papillomaviruses (HPVs) E6 and E7, respectively. Restoration of p53 or Rb function by blocking E6/p53 or E7/Rb pathway might be a potential therapeutic purpose for these cancer cells. Treatment with sodium arsenite (SA) resulted in significant repression of E6 and E7 mRNA levels in SiHa cells. After E6 and E7 repression, p53 was dramatically induced and accumulated in cellular nuclei and Rb was also induced. Two p53-responsive genes, p21(waf1/cip1) and mdm2, were induced after SA treatment. Furthermore, SA also reduced the expressions of Cdc25A and cyclin B, blocked cell cycle progression at G2/M phase, and induced apoptosis in SiHa cells. SA-induced apoptosis was greatly reduced by expression of a dominant-negative mutated p53. In this study, we have first demonstrated that SA did repress E6 and E7 oncogenes, restore the p53 tumor suppressor pathway and induce apoptosis in SiHa cells. Therefore, it would be a potential strategy to promote SA as therapeutic purpose for HPV-positive cancer cells.  相似文献   

13.
The best‐established function of the melanoma‐suppressor p16 is mediation of cell senescence, a permanent arrest following cell proliferation or certain stresses. The importance of p16 in melanoma suggests indolence of the other major senescence pathway through p53. Little or no p53 is expressed in senescent normal human melanocytes, but p16‐deficient melanocytes can undergo p53‐mediated senescence. As p16 expression occurs in nevi but falls with progression toward melanoma, we here investigated whether p53‐dependent senescence occurs at some stage and, if not, what defects were detectable in this pathway, using immunohistochemistry. Phosphorylated checkpoint kinase 2 (CHEK2) can mediate DNA‐damage signaling, and under some conditions senescence, by phosphorylating and activating p53. Remarkably, we detected no prevalent p53‐mediated senescence in any of six classes of lesions. Two separate defects in p53 signaling appeared common: in nevi, lack of p53 phosphorylation by activated CHEK2, and in melanomas, defective p21 upregulation by p53 even when phosphorylated.  相似文献   

14.
Senescent cells contribute to age‐related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild‐type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA‐β‐galactosidase (β‐gal) staining, senescence‐associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β‐gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β‐gal staining and pro‐inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP.  相似文献   

15.
Heme plays a central role in oxygen utilization and in the generation of cellular energy. Here we examined the effect of heme and heme deficiency on cell cycle progression and the expression of key regulators in HeLa cells. We found that inhibition of heme synthesis causes cell cycle arrest and induces the expression of molecular markers associated with senescence and apoptosis, such as increased formation of PML nuclear bodies. Our data show that succinyl acetone-induced heme deficiency increases the protein levels of the tumor suppressor gene product p53 and CDK inhibitor p21, and decreases the protein levels of Cdk4, Cdc2, and cyclin D2. Further, we found that heme deficiency diminishes the activation/phosphorylation of Raf, MEK1/2, and ERK1/2-components of the MAP kinase signaling pathway. Our results show that heme is a versatile molecule that can effectively control cell growth and survival by acting on multiple regulators.  相似文献   

16.
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.  相似文献   

17.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   

18.
We have previously shown that Wnt5A drives invasion in melanoma. We have also shown that Wnt5A promotes resistance to therapy designed to target the BRAFV600E mutation in melanoma. Here, we show that melanomas characterized by high levels of Wnt5A respond to therapeutic stress by increasing p21 and expressing classical markers of senescence, including positivity for senescence‐associated β‐galactosidase (SA‐β‐gal), senescence‐associated heterochromatic foci (SAHF), H3K9Me chromatin marks, and PML bodies. We find that despite this, these cells retain their ability to migrate and invade. Further, despite the expression of classic markers of senescence such as SA‐β‐gal and SAHF, these Wnt5A‐high cells are able to colonize the lungs in in vivo tail vein colony‐forming assays. This clearly underscores the fact that these markers do not indicate true senescence in these cells, but instead an adaptive stress response that allows the cells to evade therapy and invade. Notably, silencing Wnt5A reduces expression of these markers and decreases invasiveness. The combined data point to Wnt5A as a master regulator of an adaptive stress response in melanoma, which may contribute to therapy resistance.  相似文献   

19.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

20.
Mammalian cells may undergo permanent growth arrest/senescence when they incur excessive DNA damage. As a key player during DNA damage response (DDR), p53 transactivates an array of target genes that are involved in various cellular processes including the induction of cellular senescence. Chemokine receptor CXCR2 was previously reported to mediate replicative and oncogene‐induced senescence in a DDR and p53‐dependent manner. Here, we report that CXCR2 is upregulated in various types of cells in response to genotoxic or oxidative stress. Unexpectedly, we found that the upregulation of CXCR2 depends on the function of p53. Like other p53 target genes such as p21, CXCR2 is transactivated by p53. We identified a p53‐binding site in the CXCR2 promoter that responds to changes in p53 functional status. Thus, CXCR2 may act downstream of p53. While the senescence‐associated secretory phenotype (SASP) exhibits a kinetics that is distinct from that of CXCR2 expression and does not require p53, it reinforces senescence. We further showed that the cellular senescence caused by CXCR2 upregulation is mediated by p38 activation. Our results thus demonstrate CXCR2 as a critical mediator of cellular senescence downstream of p53 in response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号