首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
IKKbeta/NF-kappaB activation causes severe muscle wasting in mice   总被引:29,自引:0,他引:29  
Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt phenotype was seen upon muscle-specific inhibition of NF-kappaB through expression of IkappaBalpha superrepressor (MISR). Muscle loss was due to accelerated protein breakdown through ubiquitin-dependent proteolysis. Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice. Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy. Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy.  相似文献   

2.
3.
Abnormal levels of reactive oxygen species (ROS) and inflammatory cytokines have been observed in the skeletal muscle during muscle wasting including sarcopenia. However, the mechanisms that signal ROS production and prolonged maintenance of ROS levels during muscle wasting are not fully understood. Here, we show that myostatin (Mstn) is a pro-oxidant and signals the generation of ROS in muscle cells. Myostatin, a transforming growth factor-β (TGF-β) family member, has been shown to play an important role in skeletal muscle wasting by increasing protein degradation. Our results here show that Mstn induces oxidative stress by producing ROS in skeletal muscle cells through tumor necrosis factor-α (TNF-α) signaling via NF-κB and NADPH oxidase. Aged Mstn null (Mstn(-/-) ) muscles, which display reduced sarcopenia, also show an increased basal antioxidant enzyme (AOE) levels and lower NF-κB levels indicating efficient scavenging of excess ROS. Additionally, our results indicate that both TNF-α and hydrogen peroxide (H(2) O(2) ) are potent inducers of Mstn and require NF-κB signaling for Mstn induction. These results demonstrate that Mstn and TNF-α are components of a feed forward loop in which Mstn triggers the generation of second messenger ROS, mediated by TNF-α and NADPH oxidase, and the elevated TNF-α in turn stimulates Mstn expression. Higher levels of Mstn in turn induce muscle wasting by activating proteasomal-mediated catabolism of intracellular proteins. Thus, we propose that inhibition of ROS induced by Mstn could lead to reduced muscle wasting during sarcopenia.  相似文献   

4.
5.
6.
Increased activation of the major pro‐inflammatory NF‐κB pathway leads to numerous age‐related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF‐κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF‐κB signalling, such as that which occurs in several age‐related chronic diseases. In this study, we investigated whether rapamycin could ameliorate age‐associated phenotypes in a mouse model of genetically enhanced NF‐κB activity (nfκb1?/?) characterized by low‐grade chronic inflammation, accelerated aging and CLD. We found that, despite showing no beneficial effects in lifespan and inflammaging, rapamycin reduced frailty and improved long‐term memory, neuromuscular coordination and tissue architecture. Importantly, markers of cellular senescence, a known driver of age‐related pathology, were alleviated in rapamycin‐fed animals. Our results indicate that, in conditions of genetically enhanced NF‐κB, rapamycin delays aging phenotypes and improves healthspan uncoupled from its role as a suppressor of inflammation.  相似文献   

7.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   

8.
Human NDR1/STK38 belongs to the nuclear‐Dbf2‐related (NDR) family of Ser/Thr kinases. It has been implicated to function in centrosome duplication, control of cell cycle and apoptosis. However, the mechanism of NDR1 signaling pathway remains largely elusive. Here, we report a novel role of NDR1 in NF‐κB activation. By overexpression, NDR1 potentiates NF‐κB activation induced by TNFα, whereas knockdown of NDR1 expression inhibits NF‐κB activation induced by TNFα. Coimmunoprecipitation shows that NDR1 interacts with multiple signal components except p65 in NF‐κB signaling pathway. Furthermore, both phosphorylation and kinase dead mutants of NDR1 lose their synergistic effects on TNFα‐induced NF‐κB activation. siRNA oligo against NDR1 and kinase dead mutant as well mainly block the NF‐κB activation induced by TRAF2 but not RIP1. Furthermore, kinase dead mutant of NDR1 fails to interact with TRAF2. Taken together, our findings suggest an unknown function of NDR1, which may regulate NF‐κB activation by its kinase activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin‐like growth factor‐1 (IGF‐1) has been implicated in many anabolic pathways in skeletal muscle. IGF‐1 exists in different isoforms that might exert different role in skeletal muscle. Here we study the effects of two full propeptides IGF‐1Ea and IGF‐1Eb in skeletal muscle, with the aim to define whether and through which mechanisms their overexpression impacts muscle aging. We report that only IGF‐1Ea expression promotes a pronounced hypertrophic phenotype in young mice, which is maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed that the local expression of either IGF‐1Ea or IGF‐1Eb transgenes was protective against age‐related loss of muscle mass and force. At molecular level, both isoforms activate the autophagy/lysosome system, normally altered during aging, and increase PGC1‐α expression, modulating mitochondrial function, ROS detoxification, and the basal inflammatory state occurring at old age. Moreover, morphological integrity of neuromuscular junctions was maintained and preserved in both MLC/IGF‐1Ea and MLC/IGF‐1Eb mice during aging. These data suggest that IGF‐1 is a promising therapeutic agent in staving off advancing muscle weakness.  相似文献   

10.
Background: Anomalous expression of activation‐induced cytidine deaminase (AID) in Helicobacter pylori‐infected gastric epithelial cells has been postulated as one of the key mechanisms in the development of gastric cancer. AID is overexpressed in the cells through nuclear factor (NF)‐κB activation by H. pylori and hence, inhibition of NF‐κB pathway can downregulate the expression of AID. Curcumin, a spice‐derived polyphenol, is known for its anti‐inflammatory activity via NF‐κB inhibition. Therefore, it was hypothesized that curcumin might suppress AID overexpression via NF‐κB inhibitory activity in H. pylori‐infected gastric epithelial cells. Materials and Methods: MKN‐28 or MKN‐45 cells and H. pylori strain 193C isolated from gastric cancer patient were used for co‐culture experiments. Cells were pretreated with or without nonbactericidal concentrations of curcumin. Apoptosis was determined by DNA fragmentation assay. Enzyme‐linked immunosorbent assay was performed to evaluate the anti‐adhesion activity of curcumin. Real‐time polymerase chain reaction was employed to evaluate the expression of AID mRNA. Immunoblot assay was performed for the analysis of AID, NF‐κB, inhibitors of NF‐κB (IκB), and IκB kinase (IKK) complex regulation with or without curcumin. Results: The adhesion of H. pylori to gastric epithelial cells was not inhibited by curcumin pretreatment at nonbactericidal concentrations (≤10 μmol/L). Pretreatment with nonbactericidal concentration of curcumin downregulated the expression of AID induced by H. pylori. Similarly, NF‐κB activation inhibitor (SN‐50) and proteasome inhibitor (MG‐132) also downregulated the mRNA expression of AID. Moreover, curcumin (≤10 μmol/L) has suppressed H. pylori‐induced NF‐κB activation via inhibition of IKK activation and IκB degradation. Conclusion: Nonbactericidal concentrations of curcumin downregulated H. pylori‐induced AID expression in gastric epithelial cells, probably via the inhibition of NF‐κB pathway. Hence, curcumin can be considered as a potential chemopreventive candidate against H. pylori‐related gastric carcinogenesis.  相似文献   

11.
Sarcopenia, the age‐related loss of muscle mass, is a highly‐debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle‐specific overexpression of calpastatin, the endogenous inhibitor of calcium‐dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S‐nitrosylation. We find that calpain in adult, non‐sarcopenic muscles is S‐nitrosylated but that aging leads to loss of S‐nitrosylation, suggesting that reduced S‐nitrosylation during aging leads to increased calpain‐mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle‐specific nNOS transgene restores calpain S‐nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S‐nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age.  相似文献   

12.
Although obesity is associated with overactivation of the white adipose tissue (WAT) renin-angiotensin system (RAS), a causal link between the latter and systemic insulin resistance is not established. We tested the hypothesis that overexpression of angiotensinogen (Agt) from WAT causes systemic insulin resistance via modulation of adipose inflammation. Glucose tolerance, systemic insulin sensitivity, and WAT inflammatory markers were analyzed in mice overexpressing Agt in the WAT (aP2-Agt mice). Proteomic studies and in vitro studies using 3T3-L1 adipocytes were performed to build a mechanistic framework. Male aP2-Agt mice exhibited glucose intolerance, insulin resistance, and lower insulin-stimulated glucose uptake by the skeletal muscle. The difference in glucose tolerance between genotypes was normalized by high-fat (HF) feeding, and was significantly improved by treatment with angiotensin-converting enzyme (ACE) inhibitor captopril. aP2-Agt mice also had higher monocyte chemotactic protein-1 (MCP-1) and lower interleukin-10 (IL-10) in the WAT, indicating adipose inflammation. Proteomic studies in WAT showed that they also had higher monoglyceride lipase (MGL) and glycerol-3-phosphate dehydrogenase levels. Treatment with angiotensin II (Ang II) increased MCP-1 and resistin secretion from adipocytes, which was prevented by cotreating with inhibitors of the nuclear factor-κB (NF-κB) pathway or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, we show for the first time that adipose RAS overactivation causes glucose intolerance and systemic insulin resistance. The mechanisms appear to be via reduced skeletal muscle glucose uptake, at least in part due to Ang II-induced, NADPH oxidase and NFκB-dependent increases in WAT inflammation.  相似文献   

13.
Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging is associated with loss of motor neuron innervation, we investigated the potential for the histone deacetylase (HDAC) inhibitor butyrate to modulate age‐related muscle loss. Consistent with previous studies, we found significant loss of hindlimb muscle mass in 26‐month‐old C57Bl/6 female mice fed a control diet. Butyrate treatment starting at 16 months of age wholly or partially protected against muscle atrophy in hindlimb muscles. Butyrate increased muscle fiber cross‐sectional area and prevented intramuscular fat accumulation in the old mice. In addition to the protective effect on muscle mass, butyrate reduced fat mass and improved glucose metabolism in 26‐month‐old mice as determined by a glucose tolerance test. Furthermore, butyrate increased markers of mitochondrial biogenesis in skeletal muscle and whole‐body oxygen consumption without affecting activity. The increase in mass in butyrate‐treated mice was not due to reduced ubiquitin‐mediated proteasomal degradation. However, butyrate reduced markers of oxidative stress and apoptosis and altered antioxidant enzyme activity. Our data is the first to show a beneficial effect of butyrate on muscle mass during aging and suggests HDACs contribute to age‐related muscle atrophy and may be effective targets for intervention in sarcopenia and age‐related metabolic disease.  相似文献   

14.
To extend life expectancy and ensure healthy aging, it is crucial to prevent and minimize age‐induced skeletal muscle atrophy, also known as sarcopenia. However, the disease's molecular mechanism remains unclear. The age‐related Wnt/β‐catenin signaling pathway has been recently shown to be activated by the (pro)renin receptor ((P)RR). We report here that (P)RR expression was increased in the atrophied skeletal muscles of aged mice and humans. Therefore, we developed a gain‐of‐function model of age‐related sarcopenia via transgenic expression of (P)RR under control of the CAG promoter. Consistent with our hypothesis, (P)RR‐Tg mice died early and exhibited muscle atrophy with histological features of sarcopenia. Moreover, Wnt/β‐catenin signaling was activated and the regenerative capacity of muscle progenitor cells after cardiotoxin injury was impaired due to cell fusion failure in (P)RR‐Tg mice. In vitro forced expression of (P)RR protein in C2C12 myoblast cells suppressed myotube formation by activating Wnt/β‐catenin signaling. Administration of Dickkopf‐related protein 1, an inhibitor of Wnt/β‐catenin signaling, and anti‐(P)RR neutralizing antibody, which inhibits binding of (P)RR to the Wnt receptor, significantly improved sarcopenia in (P)RR‐Tg mice. Furthermore, the use of anti‐(P)RR neutralizing antibodies significantly improved the regenerative ability of skeletal muscle in aged mice. Finally, we show that Yes‐associated protein (YAP) signaling, which is coordinately regulated by Wnt/β‐catenin, contributed to the development of (P)RR‐induced sarcopenia. The present study demonstrates the use of (P)RR‐Tg mice as a novel sarcopenia model, and shows that (P)RR‐Wnt‐YAP signaling plays a pivotal role in the pathogenesis of this disease.  相似文献   

15.
16.
17.
One of the most important effects of aging is sarcopenia, which is associated with impaired locomotion and general weakness. In addition, there is increased susceptibility to illness in aging, which often results in muscle wasting episodes. In such instances, the mobilization of muscle proteins provides free amino acids that are used for energetic purpose, the synthesis of acute phase proteins, and the immune response. However, since muscle protein mass is already depleted, the ability of the aged organism to recover from stress is impaired. Therefore, elucidating the mechanisms that result in sarcopenia is of obvious importance. Age-related changes in protein synthesis and proteolysis are rather small and our current methodology does not enable one to establish unequivocally whether sarcopenia results from depressed protein synthesis, increased proteolysis or both. By contrast, in anabolic and catabolic periods, a number of dysregulations in muscle protein turnover became clearly apparent. The aim of this review is to provide an overview of such altered responses to nutrients and catabolic treatments, which may ultimately contribute to explain sarcopenia. This includes impaired recovery in catabolic states, impaired anabolic effects of nutrients, in particular leucine, and a lack of regulation of the ubiquitin-proteasome proteolytic system. These alterations are discussed with respect to modifications in the insulin/IGF-1 axis and glucocorticoid related effects.  相似文献   

18.
In muscle, aging is associated with a failure of adaptive responses to contractile activity, and this is hypothesized to play an important role in age-related loss of muscle mass and function. Mice lacking the Cu,Zn superoxide dismutase (Cu,ZnSOD, SOD1) show an accelerated, age-related loss of muscle mass and function. This work determined whether adult mice lacking Cu,ZnSOD (Sod1(-/-) mice) show a premature failure of adaptive responses to contractions in a similar manner to old wild-type (WT) mice. Adult Sod1(-/-) mice (6-8 months of age) had a ~30% reduction in gastrocnemius muscle mass compared with age-matched WT mice. This lower muscle mass was associated with an activation of DNA binding by NFκB and AP-1 at rest. Measurements of the activity of reactive oxygen species (ROS) in single fibres from the muscles of Sod1(-/-) mice at rest indicated an elevation in activity compared with fibres from WT mice. Following 15 min of isometric contractions, muscle fibres from WT mice showed an increase in the intracellular ROS activities and activation of NFκB and AP-1, but no changes in either ROS activity or NFκB and AP-1 activation were seen in the muscles of Sod1(-/-) mice following contractions. This pattern of changes mimics that seen in the muscles of old WT mice, suggesting that the attenuated responses to contractile activity seen in old mice result from chronic exposure to increased oxidant activity. Data support the use of the Sod1(-/-) mouse model to evaluate potential mechanisms that contribute to the loss of muscle mass and function in the elderly.  相似文献   

19.
Ample evidences demonstrate that cytochrome P450 epoxygenase‐derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti‐inflammatory, and cardiovascular protective effects. In this study, we investigated the effects of endothelium‐specific CYP2J2 overexpression on age‐related insulin resistance and metabolic dysfunction. Endothelium‐specific targeting of the human CYP epoxygenase, CYP2J2, transgenic mice (Tie2‐CYP2J2‐Tr mice) was utilized. The effects of endothelium‐specific CYP2J2 overexpression on aging‐associated obesity, inflammation, and peripheral insulin resistance were evaluated by assessing metabolic parameters in young (3 months old) and aged (16 months old) adult male Tie2‐CYP2J2‐Tr mice. Decreased insulin sensitivity and attenuated insulin signaling in aged skeletal muscle, adipose tissue, and liver were observed in aged adult male mice, and moreover, these effects were partly inhibited in 16‐month‐old CYP2J2‐Tr mice. In addition, CYP2J2 overexpression‐mediated insulin sensitization in aged mice was associated with the amelioration of inflammatory state. Notably, the aging‐associated increases in fat mass and adipocyte size were only observed in 16‐month‐old wild‐type mice, and CYP2J2 overexpression markedly prevented the increase in fat mass and adipocyte size in aged Tie2‐CYP2J2‐Tr mice, which was associated with increased energy expenditure and decreased lipogenic genes expression. Furthermore, these antiaging phenotypes of Tie2‐CYP2J2‐Tr mice were also associated with increased muscle blood flow, enhanced active‐phase locomotor activity, and improved mitochondrial dysfunction in skeletal muscle. Collectively, our findings indicated that endothelium‐specific CYP2J2 overexpression alleviated age‐related insulin resistance and metabolic dysfunction, which highlighted CYP epoxygenase‐EET system as a potential target for combating aging‐related metabolic disorders.  相似文献   

20.
Cytokines/chemokines are key players in cancer‐related inflammation. Increasing evidence suggests that chemokines produced by tumor cells are the mediators of metastasis. Thus, agents that can downregulate chemokines expression have potential against cancer metastasis. We have previously shown inhibition of ovarian and endometrial cancer cell growth with progesterone and calcitriol. In the present study, we evaluated the effect of these two agents on the expression of inflammatory genes. Using a RT‐PCR array of inflammatory cytokines/chemokines and their receptors, we found a marked attenuation of CXCL1 and CXCL2 (GRO‐α and ‐β) in cancer cells by both treatments. Knockdown of NFκB resulted in a reduced expression of CXCL1 and CXCL2 and the inhibitory effect of progesterone and calcitriol on the expression of chemokines was abrogated in NFκB‐silenced cancer cells. Silencing of IκBα increased the expression of CXCL1 and CXCL2 in cancer cells, which can be attributed to the increased activation of NFκB‐p65, caused by the lack of its inhibitor. Progesterone and calcitriol‐induced inhibition was abolished in IκBα‐knockdown cells. Our results demonstrate that suppression of IκBα phosphorylation by progesterone and calcitriol contributes to the reduced expression of CXCL1 and CXCL2. Downregulation of CXCL1 and CXCL2 was associated with a marked inhibition of metastasis‐promoting genes. Overall, our results indicate that progesterone and calcitriol inhibit IκBα phosphorylation, NFκB activation, and the expression of NFκB regulated metastasis promoting genes. These results provide attractive data for the possible use of progesterone and calcitriol in the management of endometrial and ovarian tumors. J. Cell. Biochem. 113: 3143–3152, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号