首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin has neuroprotective effect and could enhance memory. However, the mechanisms underlying the protection of curcumin on aging-related memory decline are not well understood. In this study, high frequency stimulation (HFS)-induced long term potentiation (LTP) was evaluated by a cellular model of memory formation. A two-input stimulation paradigm was used to record the potentiation as well as synapse input specificity. The data suggested that an N-Methyl-d-aspartate receptors (NMDAR) -dependent LTP was inducible in adult hippocampal slices with a characteristic of synapse input specificity. It also indicated that aging resulted in a reduction in LTP but more importantly a loss of synaptic input specificity. The reason behind the above conclusions is that LTP induction is more dependent on the calcium channel. This is due to a switch of the dependence of LTP induction to voltage-dependent calcium channel (VDCC) compared to NMDA receptors. Curcumin administration recovers input specificity by re-establishing NMDA receptor dependence of induction. In addition, curcumin administration ameliorated aging-related increase of brain thiobarbituric acid-reactive substances and elevated aging-related decrease of glutathione in hippocampus. It is then concluded that curcumin modulates hippocampal redox status and restores aging-related loss of synapse input specificity of HFS-induced LTP by switching VDCC calcium source into NMDA receptor-dependent one.  相似文献   

2.
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long‐term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging‐related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long‐term potentiation (LTP), in age‐related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82‐ to 84‐week‐old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani‐induced and dopaminergic agonist‐induced late‐LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell‐permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell‐permeable chelating agents.  相似文献   

3.
Diaryl piperazine acetamides were identified as potent and selective dopamine D(4) receptor agonists. Our strategy is based on an amide bond reversal of an acid sensitive, dopamine D(4) receptor partial agonist, PD 168077. This reversal provided compounds with excellent potency and improved stability. Systematic evaluation of the substitution on the aryl piperazine portion revealed a significant effect on functional activity. The synthesis and biological activity of these new dopamine D(4) agonists is discussed.  相似文献   

4.
R Zhou  S Wang  X Zhu 《PloS one》2012,7(8):e42443
Prenatal exposure to high-level ethanol (EtOH) has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL) striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS) induced a weaker long-term potentiation (LTP) in EtOH rats than that in control rats at postnatal day (PD) 15. The same protocol of HFS induced long-term depression (LTD) in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF) was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R) antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R) agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.  相似文献   

5.
It is well known that the characteristics of mastication are important for the maintenance of our physical well-being. In this study, to assess the importance of the effects of food hardness during mastication, we investigated whether a long-term powdered diet might cause changes in emotional behavior tests, including spontaneous locomotor activity and social interaction (SI) tests, and the dopaminergic system of the frontal cortex and hippocampus in mice. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The dopamine turnover and expression of dopamine receptors mRNA in the frontal cortex were also evaluated. Spontaneous locomotor activity, SI time and dopamine turnover of the frontal cortex were increased in powdered diet-fed mice. On the other hand, the expression of dopamine-4 (D4) receptors mRNA in the frontal cortex was decreased in powdered diet-fed mice. Moreover, we examined the effect of PD168077, a selective D4 agonist, on the increased SI time in powdered diet-fed mice. Treatment with PD168077 decreased the SI time. These results suggest that the masticatory dysfunction induced by long-term powdered diet feeding may cause the increased SI time and the changes in the dopaminergic system, especially dopamine D4 receptor subtype in the frontal cortex.  相似文献   

6.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.  相似文献   

7.
Aging‐related emotional memory deficit is a well‐known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long‐term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging‐related emotional memory deficit.  相似文献   

8.
Deficits in learning and memory accompanied by age‐related neurodegenerative diseases are closely related to the impairment of synaptic plasticity. In this study, we investigated the role of thiol redox status in the modulation of the N‐methyl‐d ‐aspartate receptor (NMDAR)‐dependent long‐term potentiation (LTP) in CA1 areas of hippocampal slices. Our results demonstrated that the impaired LTP induced by aging could be reversed by acute administration of reductants that can regulate thiol redox status directly, such as dithiothreitol or β‐mercaptoethanol, but not by classical anti‐oxidants such as vitamin C or trolox. This repair was mediated by the recruitment of aging‐related deficits in NMDAR function induced by these reductants and was mimicked by glutathione, which can restore the age‐associated alterations in endogenous thiol redox status. Moreover, antioxidant prevented but failed to reverse H2O2‐induced impairment of NMDAR‐mediated synaptic plasticity. These results indicate that the restoring of thiol redox status may be a more effective strategy than the scavenging of oxidants in the treatment of pre‐existing oxidative injury in learning and memory.  相似文献   

9.
Abstract: The present study examines the possible involvement of nitric oxide (NO)-stimulated endogenous ADP-ribosylation in long-term potentiation (LTP). LTP was induced in hippocampal slices by stimulation of Schaffer collateral inputs to the CA1 pyramidal neurons. Basal and sodium nitroprusside (SNP), which generates NO, stimulation of endogenous ADP-ribosylation was then studied in CA1 subfields isolated from the slices. Control slices received no treatment or were tetanized in the presence of aminophosphonovaleric acid, an NMDA receptor antagonist that blocks the development of LTP. SNP-stimulated ADP-ribosylation of endogenous proteins was reduced by 40–70% in LTP slices relative to control slices. LTP was also associated with a small but significant reduction in basal ADP-ribosylation activity. The results demonstrate that the induction of LTP is associated with regulation of endogenous ADP-ribosylation and suggest a role for this type of covalent modification in some aspect of LTP.  相似文献   

10.

Background

Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R) in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well.

Methodology/Principal Findings

To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power.

Conclusions/Significance

We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This suggests that converging deficits on fast-spiking interneurons may lead to decreased network function and thus aberrant gamma oscillations and cognitive decline in schizophrenia.  相似文献   

11.
Methamphetamine (MAP) is known to alter behavior and cause deficits in learning and memory. While the major site of action of MAP is on mesolimbic dopaminergic pathways, the effects on learning and memory raise the possibility of important actions in the hippocampus. We have studied electrophysiologic and morphologic effects of MAP in the CA1 region of hippocampus from young male rats chronically exposed to MAP, male rats exposed during gestation only and the effects of bath perfusion of MAP onto brain slices from control rats. Pyramidal neurons in brain slices from chronically exposed rats had reduced membrane potential and membrane resistance. Long-term potentiation (LTP) was reduced as compared to control, but when MAP was acutely perfused over control slices the amplitude of LTP was increased. LTP in young adult animals that had been gestationally exposed to MAP showed reduced LTP as compared to controls. Morphologically CA1 pyramidal neurons in chronically exposed animals showed a high prevalence of extensive blebbing of dendrites. We conclude that the NMDA receptor and the process of LTP are also targets of MAP dysfunction, at least in the hippocampus.  相似文献   

12.
Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors.  相似文献   

13.
1. The development of synaptic transmission and indicators of short- and long-term plasticity was studied by recording from areas CA1 and CA3 upon activation of monosy- naptic excitatory inputs in rat hippocampal brain slices obtained from Wistar rats of different ages.2. Although population field excitatory postsynaptic potentials (fEPSPS) are small in animals at postnatal day 10 (P10), both areas already exhibited short-term [posttetanic potentiation (PTP) and paired pulse potentiation (PPF)] and long-term [long-term potentiation (LTP)] plastic responses.3. The amplitudes of the fEPSP and LTP increased with age in both regions, but peaked at P30 in CA3 while they were still increasing at the oldest age studied (P60) in CA1. In CA3, but not CA1, LTP at P60 was less than at P30.4. PTP did not show clear alterations with age in either region. PPF decreased with age in CA1 but not CA3.  相似文献   

14.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

15.
Long term potentiation (LTP) was induced in the CA1 region of rat hippocampal slices by tetanization of the Schaffer collaterals. Local pretreatment of CA1 with serum of rabbits immunized against S-100 prevented the potentiation. However, treatment of the slices with a membrane permeant cAMP analogue, such as 8-Br-cAMP, could protect against the blocking effect of anti S-100 serum. We suggest that in the rat endogenous S-100b is involved in transduction mechanisms during LTP induction, via its ability to stimulate adenylate cyclase. Possible mechanisms of this action are discussed.  相似文献   

16.
Brief tetanic stimulation potentiates synaptic transmission both in the CA1 and dentate area of slices cut from normal rats. This long-term potentiation (LTP) was assayed in slices made at various times from rats subjected to complete bilateral sectioning of all subcortical afferents which enter the hippocampus. Over about one week survival time, LTP is present in the CA1 region of all and also in the fascia dentata of about 50% of slices. We found no signs of LTP in the dentate area of slices cut over 8 weeks after deafferentation, while the responses were clearly potentiated in the CA1 area of the same slices. Four week was the longest period when a somewhat modified version of LTP could be produced in the subcortically deafferented dentate area. The results confirm previous reports that subcortical afferents mediate some unknown factors essential for maintenance of long-term plasticity of intrinsic synapses in the fascia dentata. This unidentified, perhaps trophic influence diminishes in about 4 weeks after severing the subcortical fibers. In contrast, maintenance of subcortical inputs are apparently not required for the LTP in the intrinsic CA1 synapses.  相似文献   

17.
Hippocampal slices taken from animals chronically or acutely treated with ethanol exhibit significant inhibition of long-term potentiation (LTP). This inhibition appears to be associated with impaired activity of N-methyl-D-aspartate (NMDA) receptors, perhaps via ethanol-induced increases in GABAergic synaptic transmission. Recently, a role for the octapeptide angiotensin II (AngII) in ethanol's inhibition of LTP has been reported. Complementary to these findings our laboratory has shown that the application of the hexapeptide metabolite of AngII, angiotensin IV (AngIV), significantly facilitated normal tetanic-induced LTP in the hippocampal slice. This facilitation is presumably by activation of the angiotensin receptor subtype, AT(4). The present study tested whether an AT(4) receptor agonist could overcome ethanol-induced suppression of LTP. The results indicate that Nle(1)-AngIV could offset ethanol-induced suppression of LTP in the CA(1) region of the hippocampus. Pretreatment with the specific AT(4) receptor antagonist Nle(1), Leual(3)-AngIV blocked this facilitation implicating the involvement of the AT(4) receptor subtype. These results suggest that an AT(4) receptor agonist is effective in overcoming ethanol's suppressing influence on LTP, and encourage further investigation of the cognitive enhancing properties of such compounds.  相似文献   

18.
Stress is the response to stimulation from inside andoutside with complicated effects on organisms. Appropri-ate stressful reactions are helpful in resisting diseases byactivating unspecific modulation system, while severe orprolonged stresses are harmful and even induce mentaland physical disorders such as recurrent depression, post-traumatic stress disorder (PTSD), Alzheimer’s disease andepilepsy [1]. Hippocampus, a main brain region of keyimportance for learning, memory and emotion, is t…  相似文献   

19.
研究发现幼年和老年大鼠在条件性饮水反应的建立、消退和再建立过程中,海马CA_3区有习得性长时程突触增强(LTP)的形成、消退和再形成现象。在它的形成和再形成以及每实验日训练作业后习得性LTP的发展上,幼年鼠明显快于老年鼠,而习得性LTP的消退,在两组间无明显差异。这既表明海马CA_3区的习得性LTP具年龄特征,也为论证习得性LTP可能是学习和记忆的神经基础之一提供了新的证据。  相似文献   

20.
Age-associated deficits in learning and memory are closely correlated with impairments of synaptic plasticity. Analysis of N-methyl-D-aspartate receptor (NMDAr)-dependent long-term potentiation (LTP) in CA1 hippocampal slices indicates that the glial-derived neuromodulator D-serine is required for the induction of synaptic plasticity. During aging, the content of D-serine and the expression of its synthesizing enzyme serine racemase are significantly decreased in the hippocampus. Impaired LTP and NMDAr-mediated synaptic potentials in old rats are rescued by exogenous D-serine. These results highlight the critical role of glial cells and presumably astrocytes, through the availability of D-serine, in the deficits of synaptic mechanisms of learning and memory that occur in the course of aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号