首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
This paper describes experiments in which we have investigated the mechanism by which amino acid starvation regulates the initiation of protein synthesis in mammalian cells. We have examined the ability of a range of lysine analogues to stimulate protein synthesis in lysine-deprived mouse Ehrlich ascites tumour cells in culture. Of those analogues tested, only those which are cleaved to lysine intracellularly are capable of restoring protein synthesis to the level seen in fully fed cells. Lysine which is covalently linked to agarose does not stimulate translation. After 5 min incubation of lysine-deprived cells with the analogue lysine p-nitroanilide, the lysine concentration in cell extracts is restored to that found in extracts from fed cells, and protein synthesis is maximally stimulated within 5–10 min. During this period of time there is no increase in the concentration of lysine in the medium. These data indicate that it is the size of the intracellular rather than the extracellular amino acid pool which regulates the rate of protein synthesis during amino acid deprivation.  相似文献   

2.
声化学激活血卟啉诱导艾氏腹水肿瘤细胞凋亡   总被引:24,自引:0,他引:24  
本实验采用频率为2.0MHz,声强分别为1.0w/cm^2、1.5w/cm^2、2.0w/cm^2等不同参数,研究超声激活血卟啉对艾氏腹水肿瘤细胞的杀伤作用和诱导肿瘤细胞凋亡现象。通过扫描电镜、透射电镜以及荧光显微镜观察受损后细胞形态结构的变化,主要表现为细胞微绒毛的减少,胞膜结构和通透性的改变,细胞器的受损以及核物质的分解、丢失;同时发现处理后的肿瘤细胞有核物质凝集、趋边排列以及凋亡小体的形成等细胞凋亡特征。研究中首次发现声化学激活血卟啉在对艾氏腹水肿瘤细胞杀伤的同时,也能诱导艾氏腹水肿瘤细胞发生凋亡,提示在声动力疗法中并存着对癌细胞的直接杀伤和通过诱导癌细胞凋亡的两种抗癌途径。  相似文献   

3.
An autoradiographic study was performed on binucleate and mitotic cells in the Ehrlich ascites tumor (EAT) untreated and after treatment with 5-fluorouracil (FU). The number of binucleate cells was greater in the treated tumor than in the controls. It was also observed that the number of labeled mitoses was greater in the Fu-treated tumor. Autoradiographic labeling showed that the cells that proved to be binucleate had previously passed through S-phase; thus, these cells belonged to the proliferative compartment.  相似文献   

4.
5.
Translation of exogenous mRNAs in micrococcal nuclease-treated extracts from Ehrlich ascites tumor cells is greatly stimulated by the addition of crude initiation factors or initiation factors eIF-2B and eIF-2 containing eIF-2B. The requirement for exogenous eIF-2B in micrococcal nuclease-treated extracts does not result from either loss or enhanced phosphorylation of eIF-2 during incubation.  相似文献   

6.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187+Ca2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems.  相似文献   

7.
声化学诱导艾氏腹水瘤细胞凋亡机制初探   总被引:15,自引:0,他引:15  
刘全宏  刘书瑗  齐浩  王攀  汤薇  张坤  代乐  史秀超 《动物学报》2005,51(6):1073-1079
本研究采用频率1.43MHz,声强3W/cm2的高频聚焦超声处理艾氏腹水肿瘤细胞,研究超声激活血卟啉诱导艾氏腹水肿瘤细胞凋亡的途径及其与癌细胞内的氧自由基之间的关系。通过细胞免疫组织化学方法检测与癌细胞凋亡相关的Bax,细胞色素c和caspase-3蛋白的动态表达,黄嘌呤氧化酶法检测超氧化物歧化酶活性变化,硫代巴比妥酸法检测膜脂质过氧化物的含量。结果发现超声加血卟啉处理1h,癌细胞胞浆中的三种促凋亡蛋白表达增多,3h时表现为高表达;处理1h的癌细胞,超氧化物歧化酶活性下降,膜脂质过氧化物增多。研究结果表明超声激活血卟啉诱导艾氏腹水肿瘤细胞凋亡可能通过线粒体途径,且与癌细胞受损后产生的氧自由基有关。  相似文献   

8.
A common feature of many tumors is an increase in glucose catabolism during tumor growth. We studied the mechanism of this phenomenon by using Ehrlich ascites tumor bearing mice as the animal model. We found that Ehrlich ascites tumor cells possess only glucose transporter 1 (GLUT1) and GLUT3 but no GLUT2, GLUT4, or GLUT5. The mRNA levels of GLUT1 and GLUT3 increased progressively in the tumour during development; however, there were no changes observable in mRNA levels of glucose transporters of all types in brain, liver, and heart of the host mice. These findings suggest that Ehrlich ascites tumor augments its glucose transport mechanism relative to other tissues in response to its unique growth needs. J. Cell. Biochem. 67:131–135, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Summary The nature of the leukotriene-D4 (LTD4) induced cell shrinkage in Ehrlich ascites tumor cells has been investigated. LTD4 treatment of Ehrlich cells induces net loss of cellular KCl and cell shrinkage independent of the initial cell volume. LTD4 also produces water loss and reduction in cell volume when all extracellular and all intracellular Cl has been replaced by NO3. On the other hand, LTD4 fails to produce any significant changes in cell volume in the presence of the K-channel blocker quinine, suggesting that LTD4 in Ehrlich cells induces Cl-independent K loss through the Ca2+-dependent K channels. However, the effect of physiological doses of LTD4 on cell volume seems not to be as potent in Cl-free, NO3 cells when compared to Cl-containing cells, indicating that LTD4 in Ehrlich cells also provokes Cl-dependent K loss. LTD4 seems not to produce K loss through an electroneutral K+/H+ exchange system. LTD4 still produces Cl-independent K loss and cell shrinkage in the presence of the anticalmodulin drug pimozide but not in the presence of the LTD4 receptor antagonist L-649,923 or the 5-lipoxygenase inhibitor NDGA. Pretreatment of the cells with pertussis toxin, which inactivates inhibitory guanine nucleotide binding proteins (G-proteins), leads to partial inhibition of the LTD4-induced shrinkage. It is suggested that the LTD4-induced activation of K and Cl transporting systems in Ehrlich ascites tumor cells is mediated via a G-protein coupled receptor and that LTD4 might exert its effect through another lipoxygenase product. The Ca2+-calmodulin complex is not involved in the LTD4-induced activation of K and Cl transporting systems.  相似文献   

10.
《FEBS letters》1994,350(2-3):183-186
Ehrlich ascites tumor cells were found to be in a low bioenergetic status, as evaluated by acridine orange uptake and ATP content, when resuspended in a glucose medium shortly after removal from the animal. Dye uptake as well as ATP content then increased for about 2 h at room temperature. This effect was only slightly inhibited by oligomycin. Cells resuspended in a glucose-free medium initially showed high dye uptake and ATP level, which were stable over time: in this case oligomycin caused a drop in both dye uptake and ATP level. The above findings, which are indicative of a marked Crabtree effect in Ehrlich ascites tumor cells, means that it is unlikely that limiting ADP and Pi play an important role in the glucose-induced inhibition of oxidative phosphorylation in this system.  相似文献   

11.
Preparations of cycled tubulin from Ehrlich ascites tumor cells contain several acessory proteins; once or twice cycled microtubule preparations are usually composed of fibers 10 nm in diameter, but lack vimentin. Highly purified tubulin consists of α- and β-tubulin and a minor component which was identified by peptide mapping as a second β-chain. This pure tubulin is able to form in vitro at low concentrations (1 mg protein/ml) fibers of about 10 nm width, and at higher concentrations (3.5 mg protein/ml) normal microtubules.  相似文献   

12.
Elucidation of the mechanisms underlying potential anticancer drugs continues and unraveling these mechanisms would not only provide a conceptual framework for drug design but also promote use of natural products for chemotherapy. To further evaluate the efficacy of the anticancer activity of 1'-acetoxychavicol acetate (ACA), this study investigates the underlying mechanisms by which ACA induces death of Ehrlich ascites tumor cells. ACA treatment induced loss of cell viability, and Western blotting analysis revealed that the compound stimulated tyrosine phosphorylation of several proteins with 27 and 70 kDa proteins being regulated in both dose- and time-dependent manner prior to loss of viability. Protein tyrosine kinase inhibitor herbimycin A moderately protected cells from ACA-induced toxicity. In addition, cellular glutathione and protein sulfydryl groups were also significantly reduced both dose- and time-dependently during evidence of cell death. Replenishing thiol levels by antioxidant, N-acetylcysteine (NAC), an excellent supplier of glutathione and precursor of glutathione, substantially recovered the viability loss, but the recovery being time-dependent, as late addition of NAC (at least 30 min after ACA addition to cultures) was, however, ineffective. Addition of NAC to ACA treated cultures also abolished tyrosine phosphorylation of the 27 kDa protein. These results, at least partly, identify cellular sulfhydryl groups and protein tyrosine phosphorylation as targets of ACA cytotoxicity in tumor cells.  相似文献   

13.
Green tea extract and its polyphenolic components have been found to possess anticarcinogenic, antimutagenic, antihypertensive and antihepatotoxic effects, and several mechanisms have been proposed for these effects. In this study, the effects of five tea polyphenols, (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), (−) epicatechin-3-gallate (ECG), (−) epicatechin (EC) and (+)-catechin (C), were examined on the viability of Ehrlich ascites tumor cells in vitro and a possible relationship with tyrosine phosphorylation was determined. Proteins extracted from the cells treated with the tea polyphenols were separated by SDS-PAGE, and tyrosine-phosphorylated proteins were detected by immunoblotting with anti-phosphotyrosine antibody and the extent of phosphorylation determined. EGC (100 μM) caused a significant decrease in cell viability to 4.1±0.2% of the control value, and this correlated with a stimulation of protein tyrosine kinase (PTK) activity. EGCG (100 μM) also caused a slight decrease in cell viability (70% of the control value) but this and the other polyphenols, which had no effect on cell viability likewise, had no effect on tyrosine phosphorylation. Tyrosine phosphorylations of 42 and 45 kDa proteins were also observed for EGC. Further evaluation of the effect of EGC showed that the activity of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis in cells, decreased significantly as well. A significant correlation has therefore been observed between a cellular event, namely, a reduction in the viability of Ehrlich ascites tumor cells and an association with a tyrosine phosphorylation of 42 and 45 kDa proteins by the polyphenol EGC.  相似文献   

14.
Jacalin has been found to agglutinate Ehrlich ascites cells. The agglutination was inhibited by α-glycosides of D-Gal and β -D-Gal(1 → 3)-D-GalNAc suggesting that the lectin-ascites interaction was carbohydrate-specific. There was 21.8% inhibition of tumour (ascites) cell growthin vivo in mice administered 50μg of jacalin by injection for 6 days following intraperitoneal injection of ascites cells. Administration of 100, 150 and 200μg jacalin resulted in 40.2, 57.5 and 83% inhibition respectively. Thein vivo inhibition of tumour cells growth by jacalin was due to its preferential binding with D-Gal-α -(1 → 6) present as terminal residues in the glycoprotein on tumour cell surface.  相似文献   

15.
A possible activity of the malate-citrate shuttle has been investigated in Ehrlich ascites cells by testing the effects of 1,2,3-benzenetricarboxylic acid, an inhibitor of the malate-citrate exchange, and (?)-hydroxycitrate, an inhibitor of the citrate cleavage enzyme, on the glucose-dependent oxidation-reduction rates of pyridine nucleotides and cytochrome b as well as on ATP levels of glycolyzing cells. Moreover, to quantitate such an activity, the effects of these two inhibitors have been compared with those induced under the same experimental conditions by aminooxyacetate, an inhibitor of the malate-aspartate shuttle which is known to operate in this strain of ascites tumor. Both benzenetricarboxylic acid and hydroxycitrate are able to increase the reduction of pyridine nucleotides, which follows glucose addition to whole cells, to about the same extent. A much more pronounced effect is elicited by aminooxyacetate under the same condition. When n-butylmalonate is added to slow down the flux of glycolytic reducing equivalents to the respiratory chain via the malate-aspartate shuttle, benzenetricar-boxylic acid or hydroxycitrate promotes an ATP-driven reversal of electron transfer. Indeed, the glucose-induced reduction of cytochrome b becomes sensitive to oligomycin and the ATP level is raised significantly with respect to the value of uninhibited cells. It is concluded that the malate-citrate shuttle operates in Ehrlich ascites cells, although with a substantially lower activity with respect to the malate-aspartate shuttle.  相似文献   

16.
Potassium influx, intracellular potassium and sodium content and cellular volume were determined in vitro in Ehrlich ascites cells in the presence of up to 0.8 mM bilirubin in the incubation medium. Bilirubin uptake into cells as a function of bilirubin concentration in the incubation medium increased linearly with a molar bilirubin/albumin ratio of 20 : 1. Potassium influx and intracellular content decreased while cellular volume increased after 180 min of incubation of cells in bilirubin at a molar bilirubin/albumin ratio of 20 : 1. At a bilirubin/albumin ratio 2 : 1, potassium influx decreased, cellular volume remained unchanged, and bilirubin uptake into cells became saturated at bilirubin concentrations greater than 0.3 mM. It is suggested that bilirubin-induced alterations in potassium gradients across cell membranes may play a role in toxic effects of bilirubin on cells.  相似文献   

17.
A cytostatic, homo-aza-steroidal ester of [p-[bis-(2-chloroethyl) amino]phenyl]acetic acid (ASE) was reduced with NaB3H4 and [3H]ASE-treated DNA prepared in vitro. We found that: (1) ASE reacts preferentially with purines; (2) ASE decreases the thermal stability of the double helix upon binding to DNA; (3) [3H]ASE binding sites are clustered along the DNA molecules; (4) ASE binding sites probably represent oligo- or polypurine sequences.  相似文献   

18.
Summary PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume decrease (RVD) following hypotonic swelling in Na-containing medium but not in Na-free media, supporting the hypothesis that the effect of PGE2 is on the Na permeability. PGE2 also had no effect on RVD in Na-free media in the presence of the cation ionophore gramicidin. Since the Cl permeability becomes rate limiting for RVD in the presence of gramicidin, whereas the K permeability is rate limiting in its absence, it is concluded that PGE2 neither affects Cl nor K permeability. Addition of LTD4 accelerates RVD and since the K permeability is rate limiting for RVD this shows that LTD4 stimulates the K permeability. Inhibition of the leukotriene synthesis by nordihydroguaiaretic acid inhibits RVD even when a high K conductance has been ensured by the presence of gramicidin. It is, therefore, proposed that an increase in leukotriene synthesis after hypotonic swelling is involved also in the activation of the Cl transport pathway.  相似文献   

19.
(1) l-Cysteine inhibits aerobic glycolysis and restores the Pasteur effect in Ehrlich ascites tumour cells or in their supernatants, while d-cysteine has no effect on this process. (2) Other compounds which have configuration l at the α-carbon and a thiol group in the β-position (penicillamine) or restore them in vivo (3-mercaptopyruvate, cystine or l-serine together with l-homocysteine) also show inhibitory properties. (3) dl-Homocysteine with a free thiol group in the γ-position, reduced glutathione, methionine and products of cysteine oxidation (cysteic acid, taurine) do not inhibit tumour aerobic glycolysis. (4) Glycolysis of normal tissue supernatants (mouse liver and muscle) is not sensitive to the inhibitory effect of cysteine. (5) Metabolic studies showing a cysteine-induced decrease in ATP content, coupled with cross-over of the pyruvate and 2-phosphoenolpyruvate concentrations in Ehrlich ascites tumour cells, indicate that tumour pyruvate kinase is an enzyme sensitive to cysteine inhibition. (6) Enzymatic studies carried out both after preincubation of Ehrlich ascites tumour cells with cysteine or during direct action of this substance on tumour and normal tissue supernatants indicate the presence of a cysteine-sensitive isoenzyme besides the normal cysteine-insensitive pyruvate kinase in tumour material.  相似文献   

20.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号