共查询到20条相似文献,搜索用时 0 毫秒
1.
Secreted microvesicular miR‐31 inhibits osteogenic differentiation of mesenchymal stem cells 下载免费PDF全文
Sylvia Weilner Elisabeth Schraml Matthias Wieser Paul Messner Karl Schneider Klemens Wassermann Lucia Micutkova Klaus Fortschegger Andrea B. Maier Rudi Westendorp Heinrich Resch Susanne Wolbank Heinz Redl Pidder Jansen‐Dürr Peter Pietschmann Regina Grillari‐Voglauer Johannes Grillari 《Aging cell》2016,15(4):744-754
Damage to cells and tissues is one of the driving forces of aging and age‐related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self‐renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor‐age‐dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR‐31 as a crucial component. We demonstrated that miR‐31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR‐31 is secreted within senescent cell‐derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled‐3. Therefore, we suggest that microvesicular miR‐31 in the plasma of elderly might play a role in the pathogenesis of age‐related impaired bone formation and that miR‐31 might be a valuable plasma‐based biomarker for aging and for a systemic environment that does not favor cell‐based therapies whenever osteogenesis is a limiting factor. 相似文献
2.
J Hou Z-p Han Y-y Jing X Yang S-s Zhang K Sun C Hao Y Meng F-h Yu X-q Liu Y-f Shi M-c Wu L Zhang L-x Wei 《Cell death & disease》2013,4(10):e844
Stem cells were characterized by their stemness: self-renewal and pluripotency. Mesenchymal stem cells (MSCs) are a unique type of adult stem cells that have been proven to be involved in tissue repair, immunoloregulation and tumorigenesis. Irradiation is a well-known factor that leads to functional obstacle in stem cells. However, the mechanism of stemness maintenance in human MSCs exposed to irradiation remains unknown. We demonstrated that irradiation could induce reactive oxygen species (ROS) accumulation that resulted in DNA damage and stemness injury in MSCs. Autophagy induced by starvation or rapamycin can reduce ROS accumulation-associated DNA damage and maintain stemness in MSCs. Further, inhibition of autophagy leads to augment of ROS accumulation and DNA damage, which results in the loss of stemness in MSCs. Our results indicate that autophagy may have an important role in protecting stemness of MSCs from irradiation injury. 相似文献
3.
Yimei Hong Haiwei He Guojun Jiang Hao Zhang Wuyuan Tao Yue Ding Dongsheng Yuan Jing Liu Huimin Fan Fang Lin Xiaoting Liang Xin Li Yuelin Zhang 《Aging cell》2020,19(4)
Aging impairs the functions of human mesenchymal stem cells (MSCs), thereby severely reducing their beneficial effects on myocardial infarction (MI). MicroRNAs (miRNAs) play crucial roles in regulating the senescence of MSCs; however, the underlying mechanisms remain unclear. Here, we investigated the significance of miR‐155‐5p in regulating MSC senescence and whether inhibition of miR‐155‐5p could rejuvenate aged MSCs (AMSCs) to enhance their therapeutic efficacy for MI. Young MSCs (YMSCs) and AMSCs were isolated from young and aged donors, respectively. The cellular senescence of MSCs was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. Compared with YMSCs, AMSCs exhibited increased cellular senescence as evidenced by increased SA‐β‐gal activity and decreased proliferative capacity and paracrine effects. The expression of miR‐155‐5p was much higher in both serum and MSCs from aged donors than young donors. Upregulation of miR‐155‐5p in YMSCs led to increased cellular senescence, whereas downregulation of miR‐155‐5p decreased AMSC senescence. Mechanistically, miR‐155‐5p inhibited mitochondrial fission and increased mitochondrial fusion in MSCs via the AMPK signaling pathway, thereby resulting in cellular senescence by repressing the expression of Cab39. These effects were partially reversed by treatment with AMPK activator or mitofusin2‐specific siRNA (Mfn2‐siRNA). By enhancing angiogenesis and promoting cell survival, transplantation of anti‐miR‐155‐5p‐AMSCs led to improved cardiac function in an aged mouse model of MI compared with transplantation of AMSCs. In summary, our study shows that miR‐155‐5p mediates MSC senescence by regulating the Cab39/AMPK signaling pathway and miR‐155‐5p is a novel target to rejuvenate AMSCs and enhance their cardioprotective effects. 相似文献
4.
Human umbilical cord mesenchymal stem cells facilitate the up‐regulation of miR‐153‐3p,whereby attenuating MGO‐induced peritoneal fibrosis in rats 下载免费PDF全文
Dong Li Zhenyu Lu Xiyuan Li Zhongwei Xu Jianqing Jiang Zhenfeng Zheng Junya Jia Shan Lin Tiekun Yan 《Journal of cellular and molecular medicine》2018,22(7):3452-3463
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1. 相似文献
5.
6.
7.
8.
A number of recent studies have examined the ability of stem cells derived from different sources to differentiate into dopamine‐producing cells and ameliorate behavioural deficits in Parkinsonian models. Recently, using the approach of cell reprogramming by small cell‐permeable biological active compounds that involved in the regulation of chromatin structure and function, and interfere with specific cell signalling pathways that promote neural differentiation we have been able to generate neural‐like cells from human bone marrow (BM)‐derived MSCs (hMSCs). Neurally induced hMSCs (NI‐hMSCs) exhibited several neural properties and exerted beneficial therapeutic effect on tissue preservation and locomotor recovery in spinal cord injured rats. In this study, we aimed to determine whether hMSCs neuralized by this approach can generate dopaminergic (DA) neurons. Immunocytochemisty studies showed that approximately 50–60% of NI‐hMSCs expressed early and late dopaminergic marker such as Nurr‐1 and TH that was confirmed by Western blot. ELISA studies showed that NI‐hMSCs also secreted neurotrophins and dopamine. Hypoxia preconditioning prior to neural induction increased hMSCs proliferation, viability, expression TH and the secretion level of dopamine induced by ATP. Taken together, these studies demonstrated that hMSCs neurally modified by this original approach can be differentiated towards DA‐like neurons. 相似文献
9.
Hong‐Bin Zhao Hui Ma Xiao‐Qin Ha Ping Zheng Xiao‐Yun Li Ming Zhang Ju‐Zi Dong Yin‐Shu Yang 《Cell biology international》2014,38(4):462-471
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron‐like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule‐associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β‐tubulin III). It also increased expression of brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine‐beta‐hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons. 相似文献
10.
Dongqing Wang Bin Gao Jianing Yue Fei Liu Yifan Liu Weiguo Fu Yi Si 《Journal of cellular and molecular medicine》2019,23(2):1528-1540
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases. 相似文献
11.
Shereen Shawki Taghrid Gaafar Hadeel Erfan Engy El Khateeb Ahmad El Sheikhah Rabab El Hawary 《Microbiology and immunology》2015,59(6):348-356
Umbilical cord blood (UCB) is of great interest as a source of stem cells for use in cellular therapies. The immunomodulatory effect of mesenchymal stem cells (MSCs) originating from bone marrow, adipose tissue and amniotic membrane has previously been reported. In this study, MSCs were isolated from UCB with the aim of evaluating their immunomodulatory effects on proliferation of PB lymphocytes by two different techniques; namely, 5‐bromo‐2‐deoxyuridine ELISA and a carboxy fluorescein diacetate succinimidyl ester flow cytometric technique. MSCs were isolated from UCB, propagated until Passage four, and then characterized for cell surface markers by flow cytometry and ability to differentiate towards osteocytes and adipocytes. Immunosuppressive effects on PB lymphocytes were examined by co‐culturing mitomycin C‐treated UCB MSCs with mitogen‐stimulated lymphocytes for 72 hr. Thereafter, proliferation of lymphocytes was detected by CFSE flow cytometry and colorimetric ELISA. The titers of cytokines in cell culture supernatant were also assayed to clarify possible mechanisms of immunomodulation. UCB MSCs suppressed mitogen‐stimulated lymphocyte proliferation, which occurs via both cell‐cell contact and cytokine secretion. Titers of transforming growth factor beta and IL 10 increased, whereas that of IFN‐γ decreased in the supernatants of co‐cultures. Thus, UCB MSCs suppress the proliferation of mitogen‐stimulated lymphocytes. However further in vivo studies are required to fully evaluate the immunomodulatory effects of UCB MSCs. 相似文献
12.
13.
14.
Obesity‐induced mitochondrial dysfunction in porcine adipose tissue‐derived mesenchymal stem cells 下载免费PDF全文
Yu Meng MD PhD Alfonso Eirin MD Xiang‐Yang Zhu MD PhD Hui Tang MD PhD Pritha Chanana MS Amir Lerman MD Andre J. van Wijnen PhD Lilach O. Lerman MD PhD 《Journal of cellular physiology》2018,233(8):5926-5936
15.
Masamitsu Konno Atsushi Hamabe Shinichiro Hasegawa Hisataka Ogawa Takahito Fukusumi Shimpei Nishikawa Katsuya Ohta Yoshihiro Kano Miyuki Ozaki Yuko Noguchi Daisuke Sakai Toshihiro Kudoh Koichi Kawamoto Hidetoshi Eguchi Taroh Satoh Masahiro Tanemura Hiroaki Nagano Yuichiro Doki Masaki Mori Hideshi Ishii 《Development, growth & differentiation》2013,55(3):309-318
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. 相似文献
16.
目的探讨骨髓间充质干细胞(BMSCs)中miR-155表达水平改变后,通过诱导树突状细胞(DC)实现对免疫调节能力的影响。
方法实验分为control组、miR-155 agomir NC组、miR-155 agomir组、miR-155 antagomir NC组和miR-155 antagomir组,通过脂质体转染特异性调控BMSC中miR-155表达量后诱导DC 48 h,检测该诱导过程对DC的成熟度和迁移能力的影响;经诱导的DC与T细胞共培养72 h后检测T细胞增殖能力。多组间分析采用One-?way ANOVA进行统计学分析,两组间采用t检验进行统计学分析。
结果流式柱形直观图可见miR-155 angomir组T细胞增殖能力低于其他组。提高miR-155表达水平后,MSCs诱导的DC细胞成熟的表面标志CD40表达量由100%下降至85%(t = 33.71,P < 0.05);CD86表达水平由100%下降至75%(t = 57.00,P < 0.05)。miR-155 agomir组的BMSCs诱导的DC的迁移能力较其对照组减弱(t = 7.35,P < 0.05)。提高BMSCs中miR-155表达水平后,其诱导的DC的NF-κβ信号通路蛋白表达下降(t = 23.32,P < 0.05);AKT信号通路蛋白表达量下降(t?= 22.21,P < 0.05)。
结论BMSCs高表达miR-155后,可以通过抑制NF-κβ和AKT途径诱导耐受性DC的产生,通过诱导DC减少T细胞的增殖从而对免疫调节进行影响。 相似文献
17.
《Cell Stem Cell》2022,29(11):1515-1530
18.
Mesenchymal stem cells(MSCs)have the potential for use in cell-based regenerative therapies.Currently,hundreds of clinical trials are using MSCs for the treatment of various diseases.However,MSCs are low in number in adult tissues;they show heterogeneity depending upon the cell source and exhibit limited proliferative potential and early senescence in in vitro cultures.These factors negatively impact the regenerative potential of MSCs and therefore restrict their use for clinical applications.As a result,novel methods to generate induced MSCs(iMSCs)from induced pluripotent stem cells have been explored.The development and optimization of protocols for generation of iMSCs from induced pluripotent stem cells is necessary to evaluate their regenerative potential in vivo and in vitro.In addition,it is important to compare iMSCs with primary MSCs(isolated from adult tissues)in terms of their safety and efficacy.Careful investigation of the properties of iMSCs in vitro and their long term behavior in animals is important for their translation from bench to bedside. 相似文献
19.
Jei‐Wen Chang Hsin‐Lin Tsai Chang‐Wei Chen Hui‐Wen Yang An‐Hang Yang Ling‐Yu Yang Paulus S. Wang Yee‐Yung Ng Teng‐Lung Lin Oscar K. Lee 《Journal of cellular and molecular medicine》2012,16(12):2935-2949
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD. 相似文献
20.
Ruqin Xu Fangcheng Zhang Renjie Chai Wenyi Zhou Ming Hu Bin Liu Xuke Chen Mingke Liu Qiong Xu Ningning Liu Shiming Liu 《Journal of cellular and molecular medicine》2019,23(11):7617-7631
Exosomes are served as substitutes for stem cell therapy, playing important roles in mediating heart repair during myocardial infarction injury. Evidence have indicated that lipopolysaccharide (LPS) pre‐conditioning bone marrow‐derived mesenchymal stem cells (BMSCs) and their secreted exosomes promote macrophage polarization and tissue repair in several inflammation diseases; however, it has not been fully elucidated in myocardial infarction (MI). This study aimed to investigate whether LPS‐primed BMSC‐derived exosomes could mediate inflammation and myocardial injury via macrophage polarization after MI. Here, we found that exosomes derived from BMSCs, in both Exo and L‐Exo groups, increased M2 macrophage polarization and decreased M1 macrophage polarization under LPS stimulation, which strongly depressed LPS‐dependent NF‐κB signalling pathway and partly activated the AKT1/AKT2 signalling pathway. Compared with Exo, L‐Exo had superior therapeutic effects on polarizing M2 macrophage in vitro and attenuated the post‐infarction inflammation and cardiomyocyte apoptosis by mediating macrophage polarization in mice MI model. Consequently, we have confidence in the perspective that low concentration of LPS pre‐conditioning BMSC‐derived exosomes may develop into a promising cell‐free treatment strategy for clinical treatment of MI. 相似文献